Determinantal point processes in the plane from products of random matrices

被引:30
作者
Adhikari, Kartick [1 ]
Reddy, Nanda Kishore [1 ]
Reddy, Tulasi Ram [1 ]
Saha, Koushik [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2016年 / 52卷 / 01期
关键词
Determinantal point process; Eigenvalues; Empirical spectral distribution; Limiting spectral distribution; Haar measure; QR decomposition; Random matrix; RQ decomposition; Generalized Schur decomposition; Unitary matrix; Wedge product;
D O I
10.1214/14-AIHP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
引用
收藏
页码:16 / 46
页数:31
相关论文
共 50 条
[41]   Some uniform estimates in products of random matrices [J].
Tsay, J .
TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (03) :291-302
[42]   On the Singular Spectrum of Powers and Products of Random Matrices [J].
Alexeev, N. V. ;
Goetze, F. ;
Tikhomirov, A. N. .
DOKLADY MATHEMATICS, 2010, 82 (01) :505-507
[43]   Statistical properties of determinantal point processes in high-dimensional Euclidean spaces [J].
Scardicchio, Antonello ;
Zachary, Chase E. ;
Torquato, Salvatore .
PHYSICAL REVIEW E, 2009, 79 (04)
[44]   CENTRAL LIMIT THEOREMS FOR THE PRODUCTS OF RANDOM MATRICES SAMPLED BY A RANDOM WALK [J].
Duheille-Bienvenue, Frederique ;
Guillotin-Plantard, Nadine .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 :43-50
[45]   On the strong Brillinger-mixing property of α-determinantal point processes and some applications [J].
Heinrich, Lothar .
APPLICATIONS OF MATHEMATICS, 2016, 61 (04) :443-461
[46]   On the strong Brillinger-mixing property of α-determinantal point processes and some applications [J].
Lothar Heinrich .
Applications of Mathematics, 2016, 61 :443-461
[47]   Some statistical properties of Hadamard products of random matrices [J].
Heinz Neudecker ;
Shuangzhe Liu .
Statistical Papers, 2001, 42 :475-487
[48]   Some statistical properties of Hadamard products of random matrices [J].
Neudecker, H ;
Liu, SZ .
STATISTICAL PAPERS, 2001, 42 (04) :475-487
[49]   ASYMPTOTIC DISTRIBUTIONS OF WISHART TYPE PRODUCTS OF RANDOM MATRICES [J].
Lenczewski, Romuald ;
Salapata, Rafal .
COLLOQUIUM MATHEMATICUM, 2019, 155 (01) :67-106
[50]   Handling constrained many-objective optimization problems via determinantal point processes [J].
Ming, Fei ;
Gong, Wenyin ;
Li, Shuijia ;
Wang, Ling ;
Liao, Zuowen .
INFORMATION SCIENCES, 2023, 643