Intermolecular complexes of HXeOH with water:: Stabilization and destabilization effects

被引:89
|
作者
Nemukhin, AV [1 ]
Grigorenko, BL
Khriachtchev, L
Tanskanen, H
Pettersson, M
Räsänen, M
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119899, Russia
[2] Univ Helsinki, Chem Phys Lab, FIN-00014 Helsinki, Finland
关键词
D O I
10.1021/ja0266870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented, The structures and possible decomposition routes of the HXeOH-(H2O)(n) (n=0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe+(H2O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n=0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect, Another decomposition channel of HXeOH-(H2O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H2O/Xe matrixes are assigned to the HXeOH-H2O and HXeOH-(H2O)(2) complexes, These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption.
引用
收藏
页码:10706 / 10711
页数:6
相关论文
共 50 条
  • [21] EFFECTS OF MICROTUBULE STABILIZATION AND DESTABILIZATION ON TAU IMMUNOREACTIVITY IN CULTURED HIPPOCAMPAL-NEURONS
    MATTSON, MP
    BRAIN RESEARCH, 1992, 582 (01) : 107 - 118
  • [22] Intermolecular hydrogen bonds in water@IL supramolecular complexes
    Zanatta, Marcileia
    Dupont, Jairton
    Wentz, Gabriela Negruni
    dos Santos, Francisco P.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (17) : 11608 - 11614
  • [23] DESTABILIZATION OF THE NATURAL COMPLEXES OF BELORUSSIA
    KUDELSKIY, AV
    VESTNIK AKADEMII NAUK SSSR, 1990, (12) : 59 - 71
  • [24] Intermolecular Reactions of a Foiled Carbene with Carbonyl Compounds: The Effects of Trishomocyclopropyl Stabilization
    Apeland, Ingrid Malene
    Rosenberg, Murray G.
    Arion, Vladimir B.
    Kaehlig, Hanspeter
    Brinker, Udo H.
    JOURNAL OF ORGANIC CHEMISTRY, 2015, 80 (23): : 11877 - 11887
  • [25] Intermolecular β-sheet stabilization with aminopyrazoles
    Kirsten, CN
    Schrader, TH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (50) : 12061 - 12068
  • [26] Compensation of DNA stabilization and destabilization effects caused by cisplatin is partially disturbed in alkaline medium
    Galyuk, Elena N.
    Fridman, Alexander S.
    Vorob'ev, Vladimir I.
    Haroutiunian, Samvel G.
    Sargsyan, Shushanik A.
    Hauruk, Maryna M.
    Lando, Dmitri Y.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2008, 25 (04): : 407 - 417
  • [27] Phosphate stabilization of intermolecular interactions
    Jackson, SN
    Wang, HYJ
    Yergey, A
    Woods, AS
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (01) : 122 - 126
  • [28] Stochastic stabilization and destabilization of nonlinear differential equations
    Huang, Lirong
    SYSTEMS & CONTROL LETTERS, 2013, 62 (02) : 163 - 169
  • [29] Stabilization and destabilization of zirconium propoxide precursors by acetylacetone
    Spijksma, GI
    Bouwmeester, HJM
    Blank, DHA
    Kessler, VG
    CHEMICAL COMMUNICATIONS, 2004, (16) : 1874 - 1875
  • [30] SPACE TECHNOLOGY AS A FACTOR OF INTERNATIONAL STABILIZATION AND DESTABILIZATION
    BECHER, K
    SPACE POLICY, 1995, 11 (04) : 233 - 238