Origami-inspired active structures: a synthesis and review

被引:366
|
作者
Peraza-Hernandez, Edwin A. [1 ,2 ]
Hartl, Darren J. [1 ,2 ]
Malak, Richard J., Jr. [1 ,3 ]
Lagoudas, Dimitris C. [1 ,2 ]
机构
[1] Texas A&M Univ, Texas Inst Intelligent Mat & Struct, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Design Syst Lab, Dept Mech Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
active materials; origami; review; morphing structures; design; origami engineering; smart structures; ROLLED POLYMER TUBES; POLYDIMETHYLSILOXANE PDMS; SHAPE; DESIGN; OPTIMIZATION; DELIVERY; DNA; ENCAPSULATION; FABRICATION; MECHANISMS;
D O I
10.1088/0964-1726/23/9/094001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Origami, the ancient art of paper folding, has inspired the design of engineering devices and structures for decades. The underlying principles of origami are very general, which has led to applications ranging from cardboard containers to deployable space structures. More recently, researchers have become interested in the use of active materials (i.e., those that convert various forms of energy into mechanical work) to effect the desired folding behavior. When used in a suitable geometry, active materials allow engineers to create self-folding structures. Such structures are capable of performing folding and/or unfolding operations without being kinematically manipulated by external forces or moments. This is advantageous for many applications including space systems, underwater robotics, small scale devices, and self-assembling systems. This article is a survey and analysis of prior work on active self-folding structures as well as methods and tools available for the design of folding structures in general and self-folding structures in particular. The goal is to provide researchers and practitioners with a systematic view of the state-of-the-art in this important and evolving area. Unifying structural principles for active self-folding structures are identified and used as a basis for a quantitative and qualitative comparison of numerous classes of active materials. Design considerations specific to folded structures are examined, including the issues of crease pattern identification and fold kinematics. Although few tools have been created with active materials in mind, many of them are useful in the overall design process for active self-folding structures. Finally, the article concludes with a discussion of open questions for the field of origami-inspired engineering.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Origami-Inspired Haptics: A Literature Review
    Iiyoshi, Ken
    Lee, Jong Hyun
    Dalaq, Ahmed S.
    Khazaaleh, Shadi
    Daqaq, Mohammed F.
    Korres, Georgios
    Eid, Mohamad
    IEEE ACCESS, 2024, 12 : 33309 - 33327
  • [2] Hinges for origami-inspired structures by multimaterial additive manufacturing
    Wagner, Marius A.
    Huang, Jian-Lin
    Okle, Philipp
    Paik, Jamie
    Spolenak, Ralph
    MATERIALS & DESIGN, 2020, 191
  • [3] An overview of the mechanical description of origami-inspired systems and structures
    Fonseca, Larissa M.
    Rodrigues, Guilherme V.
    Savi, Marcelo A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223
  • [4] Geometric and Kinematic Analyses and Novel Characteristics of Origami-Inspired Structures
    Chen, Yao
    Yan, Jiayi
    Feng, Jian
    SYMMETRY-BASEL, 2019, 11 (09):
  • [5] Towards resilient adaptive origami-inspired diagrid building envelope
    Bellamy, Amanda
    Boustani, Jonathan
    Brehm, Christoph
    Soto, Mariantonieta Gutierrez
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XIII, 2019, 10967
  • [6] Fluid-driven origami-inspired artificial muscles
    Li, Shuguang
    Vogt, Daniel M.
    Rus, Daniela
    Wood, Robert J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (50) : 13132 - 13137
  • [7] An origami-inspired structure with graded stiffness
    Ma, Jiayao
    Song, Jichao
    Chen, Yan
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 136 : 134 - 142
  • [8] Harnessing architected stiffeners to manufacture origami-inspired foldable composite structures
    Al-Mansoori, Mae
    Khan, Kamran A.
    Cantwell, Wesley J.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 200
  • [9] Triboelectric energy harvesting using an origami-inspired structure
    Hu, Guobiao
    Zhao, Chaoyang
    Yang, Yaowen
    Li, Xin
    Liang, Junrui
    APPLIED ENERGY, 2022, 306
  • [10] Origami-inspired structures with programmable multi-step deformation
    Wang, Haozhe
    He, Yulong
    Yu, Anfeng
    Li, Xin
    Gu, Meng
    Ling, Xiaodong
    Chen, Guoxin
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (05) : 1182 - 1197