First-Principles Calculations of Point Defects for Quantum Technologies

被引:106
作者
Dreyer, Cyrus E. [1 ]
Alkauskas, Audrius [2 ]
Lyons, John L. [3 ]
Janotti, Anderson [4 ]
Van de Walle, Chris G. [5 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Ctr Phys Sci & Technol, LT-10257 Vilnius, Lithuania
[3] US Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[5] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
来源
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 48 | 2018年 / 48卷
基金
美国国家科学基金会;
关键词
point defects; quantum computing; quantum metrology; quantum communication; single-photon emitters; density functional theory; DENSITY-FUNCTIONAL THEORY; ELECTRON-SPIN; SILICON; EXCHANGE; DIAMOND; ATOMS; STATE; IDENTIFICATION; EXCITATIONS; MOLECULES;
D O I
10.1146/annurev-matsci-070317-124453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Point defects in semiconductors and insulators form an exciting system for realizing quantum technologies, including quantum computing, communication, and metrology. Defects provide a platform that combines the environmental isolation necessary to maintain the coherence of quantum states with the ability to perform electrical and optical manipulation. First-principles calculations play a crucial role in identifying, characterizing, and developing defects for quantum applications. We review the first-principles methodologies for calculating the relevant structural, electronic, vibrational, optical, and magnetic properties of defects for quantum technologies. We illustrate the utility and accuracy of these techniques by using examples from the literature. We also point out areas in which further development of the computational techniques is desirable.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 144 条
[1]   Optical properties of the nitrogen-vacancy singlet levels in diamond [J].
Acosta, V. M. ;
Jarmola, A. ;
Bauch, E. ;
Budker, D. .
PHYSICAL REVIEW B, 2010, 82 (20)
[2]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[3]   Diamond-based single-photon emitters [J].
Aharonovich, I. ;
Castelletto, S. ;
Simpson, D. A. ;
Su, C-H ;
Greentree, A. D. ;
Prawer, S. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (07)
[4]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[5]   Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors [J].
Alkauskas, Audrius ;
Dreyer, Cyrus E. ;
Lyons, John L. ;
Van de Walle, Chris G. .
PHYSICAL REVIEW B, 2016, 93 (20)
[6]   Tutorial: Defects in semiconductors-Combining experiment and theory [J].
Alkauskas, Audrius ;
McCluskey, Matthew D. ;
Van de Walle, Chris G. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (18)
[7]   First-principles theory of nonradiative carrier capture via multiphonon emission [J].
Alkauskas, Audrius ;
Yan, Qimin ;
Van de Walle, Chris G. .
PHYSICAL REVIEW B, 2014, 90 (07)
[8]   First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres [J].
Alkauskas, Audrius ;
Buckley, Bob B. ;
Awschalom, David D. ;
Van de Walle, Chris G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[9]   First-Principles Calculations of Luminescence Spectrum Line Shapes for Defects in Semiconductors: The Example of GaN and ZnO [J].
Alkauskas, Audrius ;
Lyons, John L. ;
Steiauf, Daniel ;
Van de Walle, Chris G. .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[10]   Defect levels through hybrid density functionals: Insights and applications [J].
Alkauskas, Audrius ;
Broqvist, Peter ;
Pasquarello, Alfredo .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (04) :775-789