AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-STIRLING NUMBERS OF THE SECOND KIND

被引:17
作者
Guo, Bai-Ni [1 ]
Mezo, Istavan [2 ]
Qi, Feng [3 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454010, Henan Province, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R China
[3] Tianjin Polytech Univ, Dept Math, Coll Sci, Tianjin 300387, Peoples R China
关键词
Explicit formula; Bernoulli number; Bernoulli polynomial; Stirling number of the second kind; r-Stirling number of the second kind; BELL NUMBERS; IDENTITIES;
D O I
10.1216/RMJ-2016-46-6-1919
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors establish an explicit formula for computing Bernoulli polynomials at nonnegative integer points in terms of r-Stirling numbers of the second kind.
引用
收藏
页码:1919 / 1923
页数:5
相关论文
共 17 条
[1]   THE R-STIRLING NUMBERS [J].
BRODER, AZ .
DISCRETE MATHEMATICS, 1984, 49 (03) :241-259
[2]   Ordered Bell numbers, Hermite polynomials, skew Young tableaux, and Borel orbits [J].
Can, Mahir Bilen ;
Joyce, Michael .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (08) :1798-1810
[3]   EXPLICIT FORMULAS FOR BERNOULLI NUMBERS [J].
GOULD, HW .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (01) :44-&
[4]  
Graham Ronald L., 1989, Concrete Mathematics-A foundation for computer science. Advanced Book Program
[5]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[6]  
Guo B.-N., 2014, ANAL BERLIN, V34, P187, DOI DOI 10.1515/ANLY-2012-1238
[7]  
Guo B.-N., 2015, GLOB J MATH ANAL, V3, P33, DOI DOI 10.14419/GJMA.V3I1.4168
[8]  
Guo B. -N., 2015, J. Anal. Number Theory, V3, P27
[9]   Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind [J].
Guo, Bai-Ni ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 :251-257
[10]   Some identities and an explicit formula for Bernoulli and Stirling numbers [J].
Guo, Bai-Ni ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :568-579