Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion

被引:34
|
作者
Gambino, G. [1 ]
Lombardo, M. C. [1 ]
Sammartino, M. [1 ]
机构
[1] Univ Palermo, Dept Math, I-90123 Palermo, Italy
关键词
Nonlinear diffusion; Activator-inhibitor kinetics; Turing instability; Hopf bifurcation; Amplitude equation; CROSS-DIFFUSION; POPULATION-MODEL; BRUSSELATOR MODEL;
D O I
10.1007/s10440-014-9903-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel-Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we compute the complex Ginzburg-Landau equation in the vicinity of the Hopf bifurcation point as it gives a slow spatio-temporal modulation of the phase and amplitude of the homogeneous oscillatory solution.
引用
收藏
页码:283 / 294
页数:12
相关论文
共 50 条
  • [1] Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion
    G. Gambino
    M. C. Lombardo
    M. Sammartino
    Acta Applicandae Mathematicae, 2014, 132 : 283 - 294
  • [2] Turing instability in the Lengyel-Epstein fractional Laplacian system
    Zidi, Salim
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [3] Turing Patterns in the Lengyel-Epstein System with Superdiffusion
    Liu, Biao
    Wu, Ranchao
    Iqbal, Naveed
    Chen, Liping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [4] Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms
    Wang, Ling
    Zhao, Hongyong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9229 - 9244
  • [5] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 1038 - 1051
  • [6] Fractal Dimension of Turing Instability in the Fractional Lengyel-Epstein Model
    Yun, Ana
    Lee, Dongsun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (03):
  • [7] Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [8] SPATIOTEMPORAL PATTERNS IN A LENGYEL-EPSTEIN MODEL NEAR A TURING HOPF SINGULAR POINT
    Zhao, Shuangrui
    Yu, Pei
    Wang, Hongbin
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (02) : 338 - 361
  • [9] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [10] Turing pattern formation in the Brusselator system with nonlinear diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    Sciacca, V.
    PHYSICAL REVIEW E, 2013, 88 (04):