Phase Matching, Strong Frequency Doubling, and Outstanding Laser-Induced Damage Threshold in the Biaxial, Quaternary Diamond-like Semiconductor Li4CdSn2S7

被引:62
作者
Zhang, Jian-Han [1 ]
Stoyko, Stanislav S. [2 ]
Craig, Andrew J. [2 ]
Grima, Pedro [3 ,4 ]
Kotchey, Joshua W. [2 ]
Jang, Joon, I [5 ]
Aitken, Jennifer A. [2 ]
机构
[1] Sanming Univ, Sch Resources & Chem Engn, Sanming 365004, Peoples R China
[2] Duquesne Univ, Dept Chem & Biochem, Pittsburgh, PA 15282 USA
[3] Univ Los Andes, Fac Ciencias, Ctr Estudios Semicond, Dept Fis, Merida 5101, Venezuela
[4] Ctr Nacl Tecnol Opt CNTO, Merida 5101, Venezuela
[5] Sogang Univ, Dept Phys, Seoul 04017, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
NONLINEAR-OPTICAL PROPERTIES; CRYSTAL-STRUCTURES; GE; SE; SULFIDE; SN; SI; GROWTH; GAP; CHALCOGENIDES;
D O I
10.1021/acs.chemmater.0c03268
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The novel diamond-like Li4CdSn2S7 possesses many outstanding attributes that enable it to be a new, well-rounded front-runner among infrared (IR) nonlinear-optical materials, especially for high-intensity laser applications. Distortions of the metal-sulfur tetrahedra in accordance with Pauling's second rule give rise to a significant net dipole moment, resulting in a strong second-order nonlinear optical susceptibility (chi((2))) of 35.0 +/- 3.5 pm/V. Li4CdSn2S7 possesses an optical bandgap of 2.59 eV and an exceptional laser-induced damage threshold of >2.5 GW/cm(2), which is more than 12.5 times greater than that of AgGaSe2 measured under identical irradiation conditions. Li4CdSn2S7 possesses a melting point of similar to 780 degrees C and phase-matchability. All data indicate that Li4CdSn2S7 will outperform AgGaS2 and AgGaSe2 in difference frequency generation schemes for the generation of mid-IR radiation. New information on the recently reported Li2CdSiS4, which Li-4 CdSn2S7 also outperforms, is additionally included.
引用
收藏
页码:10045 / 10054
页数:10
相关论文
共 100 条
  • [61] The effect of composition on photoconductivity and nonlinear optical properties in the acentric Ag2In2AB6 (A = Si, Ge, B = S, Se) crystals
    Myronchuk, G. L.
    Zamuruyeva, O. V.
    Parasyuk, O. V.
    Kityk, I. V.
    Czaja, P.
    Piasecki, M.
    [J]. OPTIK, 2019, 179 : 948 - 956
  • [62] Nikogosyan D N, 2006, Nonlinear optical crystals: a complete surveyM, DOI Springer
  • [63] Emergence of chalcopyrites as nonlinear optical materials
    Ohmer, MC
    Pandey, R
    Bairamov, BH
    [J]. MRS BULLETIN, 1998, 23 (07) : 16 - 20
  • [64] THE ADAMANTINE FAMILY OF COMPOUNDS
    PAMPLIN, B
    [J]. PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 1980, 3 (2-3): : 179 - 192
  • [65] Parthe E., 1964, Crystal chemistry of tetrahedral structures
  • [66] The principles determining the structure of complex ionic crystals
    Pauling, L
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1929, 51 (1-4) : 1010 - 1026
  • [67] Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption
    Pearl, S
    Fastig, S
    Ehrlich, Y
    Lavi, R
    [J]. APPLIED OPTICS, 2001, 40 (15) : 2490 - 2492
  • [68] Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
  • [69] Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources
    Petrov, Valentin
    [J]. OPTICAL MATERIALS, 2012, 34 (03) : 536 - 554
  • [70] Optical Non linearity in Cu2CdSnS4 and α/β-Cu2ZnSiS4: Diamond-like Semiconductors with High Laser-Damage Thresholds
    Rosmus, Kimberly A.
    Brant, Jacilynn A.
    Wisneski, Stephen D.
    Clark, Daniel J.
    Kim, Yong Soo
    Jang, Joon I.
    Brunetta, Carl D.
    Zhang, Jian-Han
    Srnec, Matthew N.
    Aitken, Jennifer A.
    [J]. INORGANIC CHEMISTRY, 2014, 53 (15) : 7809 - 7811