Phase Matching, Strong Frequency Doubling, and Outstanding Laser-Induced Damage Threshold in the Biaxial, Quaternary Diamond-like Semiconductor Li4CdSn2S7

被引:62
作者
Zhang, Jian-Han [1 ]
Stoyko, Stanislav S. [2 ]
Craig, Andrew J. [2 ]
Grima, Pedro [3 ,4 ]
Kotchey, Joshua W. [2 ]
Jang, Joon, I [5 ]
Aitken, Jennifer A. [2 ]
机构
[1] Sanming Univ, Sch Resources & Chem Engn, Sanming 365004, Peoples R China
[2] Duquesne Univ, Dept Chem & Biochem, Pittsburgh, PA 15282 USA
[3] Univ Los Andes, Fac Ciencias, Ctr Estudios Semicond, Dept Fis, Merida 5101, Venezuela
[4] Ctr Nacl Tecnol Opt CNTO, Merida 5101, Venezuela
[5] Sogang Univ, Dept Phys, Seoul 04017, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
NONLINEAR-OPTICAL PROPERTIES; CRYSTAL-STRUCTURES; GE; SE; SULFIDE; SN; SI; GROWTH; GAP; CHALCOGENIDES;
D O I
10.1021/acs.chemmater.0c03268
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The novel diamond-like Li4CdSn2S7 possesses many outstanding attributes that enable it to be a new, well-rounded front-runner among infrared (IR) nonlinear-optical materials, especially for high-intensity laser applications. Distortions of the metal-sulfur tetrahedra in accordance with Pauling's second rule give rise to a significant net dipole moment, resulting in a strong second-order nonlinear optical susceptibility (chi((2))) of 35.0 +/- 3.5 pm/V. Li4CdSn2S7 possesses an optical bandgap of 2.59 eV and an exceptional laser-induced damage threshold of >2.5 GW/cm(2), which is more than 12.5 times greater than that of AgGaSe2 measured under identical irradiation conditions. Li4CdSn2S7 possesses a melting point of similar to 780 degrees C and phase-matchability. All data indicate that Li4CdSn2S7 will outperform AgGaS2 and AgGaSe2 in difference frequency generation schemes for the generation of mid-IR radiation. New information on the recently reported Li2CdSiS4, which Li-4 CdSn2S7 also outperforms, is additionally included.
引用
收藏
页码:10045 / 10054
页数:10
相关论文
共 100 条
  • [11] Dependence of the Second-Harmonic Generation Response on the Cell Volume to Band-Gap Ratio
    Cheng, Xiyue
    Whangbo, Myung-Hwan
    Hong, Maochun
    Deng, Shuiquan
    [J]. INORGANIC CHEMISTRY, 2019, 58 (15) : 9572 - 9575
  • [12] Hexagonal In2Se3: A Defect Wurtzite-Type Infrared Nonlinear Optical Material with Moderate Birefringence Contributed by Unique InSe5 Unit
    Chi, Yang
    Sun, Zong-Dong
    Xu, Qian-Ting
    Xue, Huai-Guo
    Guo, Sheng-Ping
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) : 17711 - 17717
  • [13] Metal Chalcogenides: A Rich Source of Nonlinear Optical Materials
    Chung, In
    Kanatzidis, Mercouri G.
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (01) : 849 - 869
  • [14] Clark D. J., KURTZ PERRY POWDER T
  • [15] Syntheses and crystal structures of the quaternary thiogermanates Cu4FeGe2S7 and Cu4CoGe2S7
    Craig, Andrew J.
    Stoyko, Stanislav S.
    Bonnoni, Allyson
    Aitken, Jennifer A.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2020, 76 : 1117 - +
  • [16] STRUCTURE OF COPPER SILICON SULFIDE CU5SI2S7
    DOGGUY, M
    JAULMES, S
    LARUELLE, P
    RIVET, J
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1982, 38 (JUL): : 2014 - 2016
  • [17] The powder diffraction file: present and future
    Faber, J
    Fawcett, T
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 (3 PART 1): : 325 - 332
  • [18] AgGa2PS6: A New Mid-Infrared Nonlinear Optical Material with a High Laser Damage Threshold and a Large Second Harmonic Generation Response
    Feng, Jiang-He
    Hu, Chun-Li
    Xu, Xiang
    Li, Bing-Xuan
    Zhang, Ming-Jian
    Mao, Jiang-Gao
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (46) : 10978 - 10982
  • [19] LONSDALEITE A HEXAGONAL POLYMORPH OF DIAMOND
    FRONDEL, C
    MARVIN, UB
    [J]. NATURE, 1967, 214 (5088) : 587 - &
  • [20] Wavelength dependence of femtosecond laser-induced damage threshold of optical materials
    Gallais, L.
    Douti, D. -B.
    Commandre, M.
    Bataviciute, G.
    Pupka, E.
    Sciuka, M.
    Smalakys, L.
    Sirutkaitis, V.
    Melninkaitis, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (22)