Non-planar elliptic vertex

被引:4
作者
Bezuglov, M. A. [1 ,2 ,3 ]
Onishchenko, A., I [1 ,3 ,4 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Joliot Curie 6, Dubna 141980, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, 9 Inst Skiy 9, Dolgoprudnyi 141701, Moscow Region, Russia
[3] Budker Inst Nucl Phys, Prospekt Akad Lavrentyeva 11, Novosibirsk 630090, Russia
[4] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, 1 2,Leninskie Gory,GSP 1, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
NLO Computations; DIFFERENTIAL-EQUATIONS METHOD; NUMERICAL EVALUATION; FEYNMAN-INTEGRALS; MODULI SPACES; ITERATED INTEGRALS; MASTER INTEGRALS; SELF-ENERGY; DIAGRAMS; POLYLOGARITHMS; ALGORITHM;
D O I
10.1007/JHEP04(2022)045
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the problem of obtaining higher order in regularization parameter epsilon analytical results for master integrals with elliptics. The two commonly employed methods are provided by the use of differential equations and direct integration of parametric representations in terms of iterated integrals. Taking non-planar elliptic vertex as an example we show that in addition to two mentioned methods one can use analytical solution of differential equations in terms of power series. Moreover, in the last case it is possible to obtain the exact in epsilon results.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Distance functions and skeletal representations of rigid and non-rigid planar shapes
    Eftekharian, Ata A.
    Ilies, Horea T.
    COMPUTER-AIDED DESIGN, 2009, 41 (12) : 865 - 876
  • [42] Construction of Non-rectangular Floor Plans for Properly Triangulated Planar Graphs
    Raveena
    Shekhawat, Krishnendra
    EMERGING VLSI DEVICES, CIRCUITS AND ARCHITECTURES, VDAT 2023, 2025, 1234 : 331 - 348
  • [43] A non-gradient method for solving elliptic partial differential equations with deep neural networks
    Peng, Yifan
    Hu, Dan
    Xu, Zin-Qin John
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [44] Stress distribution around an elliptic hole in a plate with 'implicit' and 'explicit' non-local models
    Tuna, Meral
    Trovalusci, Patrizia
    COMPOSITE STRUCTURES, 2021, 256
  • [45] Determination of the detection efficiency of a planar HPGe detector with a non-uniform frontal dead layer
    Brualla, Lorenzo
    Maidana, Nora L.
    Vanin, Vito R.
    X-RAY SPECTROMETRY, 2015, 44 (03) : 89 - 92
  • [46] Improved multi-scale fusion network for solving non-smooth elliptic interface problems with applications
    Ying, Jinyong
    Li, Jiao
    Liu, Qiong
    Chen, Yinghao
    APPLIED MATHEMATICAL MODELLING, 2024, 132 : 274 - 297
  • [47] Master integrals for the NNLO virtual corrections to qq¯→tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\overline{q}\to t\overline{t} $$\end{document} scattering in QCD: the non-planar graphs
    Stefano Di Vita
    Thomas Gehrmann
    Stefano Laporta
    Pierpaolo Mastrolia
    Amedeo Primo
    Ulrich Schubert
    Journal of High Energy Physics, 2019 (6)
  • [48] Dynamic Shifting Genetic Non-adjacent Form Elliptic Curve Diffie-Hellman Key Exchange Procedure for IoT Heterogeneous Network
    Durairaj, M.
    Muthuramalingam, K.
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 489 - 509
  • [49] CONSTRAINT-TYPE FICTITIOUS TIME INTEGRATION METHOD FOR SOLVING NON-LINEAR MULTI-DIMENSIONAL ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Chen, Yung-Wei
    Liu, Chein-Shan
    Chang, Yen-Shen
    Chang, Jiang-Ren
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2020, 28 (03): : 168 - 178
  • [50] Towards robust, fast solutions of elliptic equations on complex domains through hybrid high-order discretizations and non-nested multigrid methods
    Di Pietro, Daniele A.
    Hulsemann, Frank
    Matalon, Pierre
    Mycek, Paul
    Ruede, Ulrich
    Ruiz, Daniel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (22) : 6576 - 6595