Non-planar elliptic vertex

被引:4
作者
Bezuglov, M. A. [1 ,2 ,3 ]
Onishchenko, A., I [1 ,3 ,4 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Joliot Curie 6, Dubna 141980, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, 9 Inst Skiy 9, Dolgoprudnyi 141701, Moscow Region, Russia
[3] Budker Inst Nucl Phys, Prospekt Akad Lavrentyeva 11, Novosibirsk 630090, Russia
[4] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, 1 2,Leninskie Gory,GSP 1, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
NLO Computations; DIFFERENTIAL-EQUATIONS METHOD; NUMERICAL EVALUATION; FEYNMAN-INTEGRALS; MODULI SPACES; ITERATED INTEGRALS; MASTER INTEGRALS; SELF-ENERGY; DIAGRAMS; POLYLOGARITHMS; ALGORITHM;
D O I
10.1007/JHEP04(2022)045
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the problem of obtaining higher order in regularization parameter epsilon analytical results for master integrals with elliptics. The two commonly employed methods are provided by the use of differential equations and direct integration of parametric representations in terms of iterated integrals. Taking non-planar elliptic vertex as an example we show that in addition to two mentioned methods one can use analytical solution of differential equations in terms of power series. Moreover, in the last case it is possible to obtain the exact in epsilon results.
引用
收藏
页数:31
相关论文
共 50 条