Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential

被引:64
作者
Tang, X. H. [1 ]
Xiao, Li [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Homoclinic solutions; p-Laplacian systems; Coercive potential; PERIODIC-SOLUTIONS; 2ND-ORDER SYSTEMS; ORBITS; EXISTENCE;
D O I
10.1016/j.na.2008.11.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result for the existence of homoclinic orbits is obtained for p-Laplacian systems d/dt (vertical bar(u) over dot(t)vertical bar(p-2)(u) over dot(t)) = del F(t, u(t)) + f(t), where p > 1, u is an element of R-n, F is an element of C-1(R x R-n, R) is T-periodic with respect to t and f : R -> R-n is a continuous and bounded function such that F(t, x ) >= F(t, 0) + b vertical bar x vertical bar(mu) and integral(R) vertical bar f(t)vertical bar(mu/(mu-1)) dt < infinity for some b > 0 and mu > 1. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1124 / 1132
页数:9
相关论文
共 23 条
[1]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[2]  
[Anonymous], 2005, APPL MATH, DOI DOI 10.1007/S10492-005-0037-8
[3]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[4]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[5]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[6]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[7]   Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential [J].
Izydorek, Marek ;
Janczewska, Joanna .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1119-1127
[8]   Ordinary p-Laplacian systems with nonlinear boundary conditions [J].
Jebelean, P ;
Morosanu, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) :738-753
[9]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[10]   Some boundary value problems for Hartman-type perturbations of the ordinary vector p-laplacian [J].
Mawhin, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :497-503