Recovery of Sparse Positive Signals on the Sphere from Low Resolution Measurements

被引:7
作者
Bendory, Tamir [1 ]
Eldar, Yonina C. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Convex optimization; spherical harmonics; super-resolution;
D O I
10.1109/LSP.2015.2485281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter considers the problem of recovering a positive stream of Diracs on a sphere from its projection onto the space of low-degree spherical harmonics, namely, from its low-resolution version. We suggest recovering the Diracs via a tractable convex optimization problem. The resulting recovery error is proportional to the noise level and depends on the density of the Diracs. We validate the theory by numerical experiments.
引用
收藏
页码:2383 / 2386
页数:4
相关论文
共 32 条
[1]  
[Anonymous], ARXIV150308782
[2]  
[Anonymous], ARXIV14081681
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]   Directional wavelet analysis on the sphere: Application to gravity and topography of the terrestrial planets [J].
Audet, Pascal .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[5]  
Bendory T., CONSTRUCT A IN PRESS
[6]  
Bendory T., 2015, ARXIV150707256
[7]  
Bendory T., 2014, ARXIV14123262
[8]   Super-Resolution on the Sphere Using Convex Optimization [J].
Bendory, Tamir ;
Dekel, Shai ;
Feuer, Arie .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) :2253-2262
[9]   Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials [J].
Bendory, Tamir ;
Dekel, Shai ;
Feuer, Arie .
JOURNAL OF APPROXIMATION THEORY, 2014, 182 :7-17
[10]  
Candes E. J., 2015, ARXIV150400717