Output Power Estimation of High Concentrator Photovoltaic using Radial Basis Function Neural Network

被引:0
作者
Anaty, Mensah K. [1 ,2 ,3 ]
Alamin, Yaser I. [3 ]
Bouziane, Khalid [1 ]
Perez Garcia, Manuel [3 ]
Yaagoubi, Reda [4 ]
Alvarez Hervas, Jose Domingo [3 ]
Belkasmi, Merouan [1 ]
Aggour, Mohammed [2 ]
机构
[1] Univ Int Rabat, LERMA, Sch Renewable & Petr Studies, Technopolis 11000, Morocco
[2] Univ Ibn Tofail, Fac Sci, Renewable Energy & Environm Lab, Kenitra 14000, Morocco
[3] Univ Almeria, CIESOL Res Ctr Solar Energy, Agrifood Campus Int Excellence,ceiA3, E-04120 Almeria, Spain
[4] Hassan II Agron & Vet Inst, Sch Geomat & Surveying Engn, Rabat, Morocco
来源
2018 6TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC) | 2018年
关键词
Power Estimation; High Concentrator Photo Voltaic; Machine Learning; Radial Basis Function; Neural Network; MAXIMUM POWER; MODULES;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High Concentrator PhotoVoltaic (HCPV) is a recent PV technology generating electricity from solar radiation. Unlike conventional PV systems, it uses lenses and curved mirrors to focus solar rays onto small, but highly efficient Multi-junction (M.I) solar cells. Solar tracker and cooling systems are part of a standard CPV facility. Due to the complex design of an HCPV system, the output power estimation becomes a very hard task. In contrast, Machine Learning (ML) methods, and more specifically Artificial Neural Networks (ANNs), provide very suitable solutions for modelling complicated systems. The aim of this work is to develop a Radial Basis Function Neural Network (RBFNN) model to predict the output power of an HCPV facility. RBFNNs have a simple topological structure and their ability to reveal how learning proceeds in an explicit manner. Our results showed that the RBFNN model provides more accurate estimation of output power compared to the ASTM-E2527 based on the same dataset.
引用
收藏
页码:960 / 965
页数:6
相关论文
共 18 条
[1]   An Economic Model-Based Predictive Control to Manage the Users' Thermal Comfort in a Building [J].
Alamin, Yaser Imad ;
del Mar Castilla, Maria ;
Domingo Alvarez, Jose ;
Ruano, Antonio .
ENERGIES, 2017, 10 (03)
[2]   Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network [J].
Almonacid, F. ;
Fernandez, Eduardo F. ;
Rodrigo, P. ;
Perez-Higueras, P. J. ;
Rus-Casas, C. .
ENERGY, 2013, 53 :165-172
[3]  
American society for testing and materials, 2009, E2527 ASTM
[4]  
[Anonymous], 2004, SAND20043535
[5]  
[Anonymous], PROGR PHOTOVOLTAICS
[6]   Online 24-h solar power forecasting based on weather type classification using artificial neural network [J].
Chen, Changsong ;
Duan, Shanxu ;
Cai, Tao ;
Liu, Bangyin .
SOLAR ENERGY, 2011, 85 (11) :2856-2870
[7]   Model for the prediction of the maximum power of a high concentrator photovoltaic module [J].
Fernandez, Eduardo F. ;
Almonacid, F. ;
Rodrigo, P. ;
Perez-Higueras, P. .
SOLAR ENERGY, 2013, 97 :12-18
[8]   Exploiting the separability of linear and nonlinear parameters in radial basis function networks [J].
Ferreira, PM ;
Ruano, AE .
IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, :321-326
[9]  
Haykin S., 2005, NEURAL NETWORKS COMP
[10]   Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques [J].
Mandal, Paras ;
Madhira, Surya Teja Swarroop ;
Ul Haque, Ashraf ;
Meng, Julian ;
Pineda, Ricardo L. .
COMPLEX ADAPTIVE SYSTEMS 2012, 2012, 12 :332-337