Limited-angle acousto-electrical tomography

被引:13
作者
Hubmer, Simon [1 ]
Knudsen, Kim [2 ]
Li, Changyou [2 ]
Sherina, Ekaterina [2 ]
机构
[1] Johannes Kepler Univ Linz, Doctoral Program Computat Math, Linz, Austria
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, Asmussens Alle, DK-2800 Lyngby, Denmark
基金
奥地利科学基金会;
关键词
Electrical impedance tomography; acousto-electrical tomography; limited-angle; hybrid data; inverse problem; parameter identification; Landweber iteration; regularization method; CALDERON PROBLEM; IMPEDANCE TOMOGRAPHY;
D O I
10.1080/17415977.2018.1512983
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper considers the reconstruction problem in acousto-electrical tomography, i.e. the problem of estimating a spatially varying conductivity in a bounded domain from measurements of the internal power densities resulting from different prescribed boundary conditions. Particular emphasis is placed on the limited-angle scenario, in which the boundary conditions are supported only on a part of the boundary. The reconstruction problem is formulated as an optimization problem in a Hilbert space setting and solved using Landweber iteration. The resulting algorithm is implemented numerically in two spatial dimensions and tested on simulated data. The results quantify the intuition that features close to the measurement boundary are stably reconstructed and features further away are less well reconstructed. Finally, the ill-posedness of the limited-angle problem is quantified numerically using the singular value decomposition of the corresponding linearized problem.
引用
收藏
页码:1298 / 1317
页数:20
相关论文
共 39 条
[1]   Critical Points for Elliptic Equations with Prescribed Boundary Conditions [J].
Alberti, Giovanni S. ;
Bal, Guillaume ;
Di Cristo, Michele .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (01) :117-141
[2]  
Alberti GS, 2018, SOC MATH FRANCE, V35
[3]  
Alnaes MS., 2015, Archive of numerical software, V3, P1, DOI [10.11588/ans. 2015.100.20553, DOI 10.11588/ANS.2015.100.20553]
[4]   Electrical impedance tomography by elastic deformation [J].
Ammari, H. ;
Bonnetier, E. ;
Capdeboscq, Y. ;
Tanter, M. ;
Fink, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) :1557-1573
[5]   Resolution and stability analysis in acousto-electric imaging [J].
Ammari, Habib ;
Garnier, Josselin ;
Jing, Wenjia .
INVERSE PROBLEMS, 2012, 28 (08)
[6]  
[Anonymous], 2004, Electrical impedance tomography: methods, history and applications
[7]  
[Anonymous], 2011, P INT C IS INIR PET
[8]   Propagation of singularities for linearised hybrid data impedance tomography [J].
Bal, Guillaume ;
Hoffmann, Kristoffer ;
Knudsen, Kim .
INVERSE PROBLEMS, 2018, 34 (02)
[9]   CAUCHY PROBLEM FOR ULTRASOUND-MODULATED EIT [J].
Bal, Guillaume .
ANALYSIS & PDE, 2013, 6 (04) :751-775
[10]   INVERSE DIFFUSION FROM KNOWLEDGE OF POWER DENSITIES [J].
Bal, Guillaume ;
Bonnetier, Eric ;
Monard, Francois ;
Triki, Faouzi .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) :353-375