Localized electrochemical oxidation of p-GaAs(100) using atomic force microscopy with a carbon nanotube probe

被引:11
作者
Huang, Wu-Ping
Cheng, Hung-Hsiang
Jian, Sheng-Rui [1 ]
Chuu, Der-San
Hsieh, Jin-Yuan
Lin, Chih-Ming
Chiang, Mu-Sheng
机构
[1] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10764, Taiwan
[3] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10764, Taiwan
[4] Ming Hsin Univ Sci & Technol, Dept Mech Engn, Hsinchu 30401, Taiwan
[5] Natl Chung Hsing Univ Educ, Dept Appl Sci, Hsinchu 30014, Taiwan
[6] Nan Kai Inst Technol, Dept Mech Engn, Nantou 54243, Taiwan
关键词
FIELD-INDUCED OXIDATION; CONDUCTING-PROBE; GAAS; NANOFABRICATION; KINETICS; SILICON; SURFACE; DEVICES; MECHANISMS;
D O I
10.1088/0957-4484/17/15/039
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The nanometre-scale oxidation characteristics of a p-GaAs(100) surface are investigated by atomic force microscope (AFM) electrochemical nanolithography with a multiwalled carbon nanotube (MWCNT) probe. The electrochemical parameters, such as anodizing voltages, scanning rate and modulated voltages, and how they affect the creation and growth of the oxide nanostructures are explored. The present results reveal that the initial growth rate (similar to 600 nm s(-1) for 10 V) decreases rapidly as the electric field strength is decreased. The oxide practically ceases to grow as the electric field is reduced to the order of similar to 1.2 x 10(7) V cm(-1). Also, the oxide growth rate depends not only on the electric field strength but also on the applied anodizing voltage. The present results show that the height of the oxide structures can be significantly improved at an applied anodizing voltage of 10 V by using a CNT probe. In addition, Auger electron spectroscopy (AES) measurements performed in the present work confirm that modified structures replace the form of anodizing p-GaAs(100).
引用
收藏
页码:3838 / 3843
页数:6
相关论文
共 50 条
[21]   Atomic force microscopy and electrochemical investigation on the corrosion behavior of carbon steel passivated by molybdate and chromate [J].
Chen, Zhenyu ;
Zhang, Xiulan ;
Huang, Ling ;
Guo, Xingpeng .
MICROSCOPY RESEARCH AND TECHNIQUE, 2013, 76 (02) :173-177
[22]   Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe [J].
Shibata, Takayuki ;
Yamamoto, Kota ;
Sasano, Junji ;
Nagai, Moeto .
AIP ADVANCES, 2017, 7 (09)
[23]   Investigation of Corrosion Inhibitor Adsorption on Mica and Mild Steel Using Electrochemical Atomic Force Microscopy and Molecular Simulations [J].
Wang, Huiru ;
Sharma, Sumit ;
Pailleret, Alain ;
Brown, Bruce ;
Nesi, Srdjan .
CORROSION, 2022, 78 (10) :990-1002
[24]   Flatness improvement of GaAs observed by atomic force microscopy using flow rate modulation epitaxy [J].
Lee, MK ;
Hu, CC .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1997, 36 (1AB) :L15-L17
[25]   Electrochemical impedance spectroscopy investigations on the L-cysteine-thiolate self-assembled monolayers formed at p-GaAs(100) electrodes [J].
Lazarescu, Valentina ;
Enache, Mirela ;
Anastasescu, Mihai ;
Dobrescu, Gianina ;
Negrila, Catalin ;
Lazarescu, Mihai Florin .
ELECTROCHIMICA ACTA, 2014, 131 :42-51
[26]   Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites [J].
Barsan, Oana A. ;
Hoffmann, Gunter G. ;
van der Ven, Leendert G. J. ;
de With, Gijsbertus .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (30) :19701-19708
[27]   Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe [J].
Sweetman, Adam ;
Jarvis, Sam ;
Danza, Rosanna ;
Moriarty, Philip .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 :25-32
[28]   Metal bonding strength in low-temperature processed titanium using atomic force microscopy with single-wall carbon nanotube tip [J].
Choi, E. M. ;
Cui, Y. H. ;
Kwon, S. H. ;
Kim, A. R. ;
Choi, H. S. ;
Lee, S. J. ;
Pyo, S. G. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (02) :146-149
[29]   Electrochemical direct writing and erasing of silver nanostructures on phosphate glass using atomic force microscopy [J].
Barna, Shama F. ;
Jacobs, Kyle E. ;
Mensing, Glennys A. ;
Ferreira, Placid M. .
NANOTECHNOLOGY, 2017, 28 (06)
[30]   Nanoenvelopes: Wrapping a Single-Walled Carbon Nanotube with Graphene using an Atomic Force Microscope [J].
Hu, Xiao ;
Wei, Hang ;
Liu, Jia ;
Zhang, Jian ;
Chi, Xiannian ;
Jiang, Peng ;
Sun, Lianfeng .
ADVANCED MATERIALS, 2019, 31 (45)