Localized electrochemical oxidation of p-GaAs(100) using atomic force microscopy with a carbon nanotube probe

被引:11
作者
Huang, Wu-Ping
Cheng, Hung-Hsiang
Jian, Sheng-Rui [1 ]
Chuu, Der-San
Hsieh, Jin-Yuan
Lin, Chih-Ming
Chiang, Mu-Sheng
机构
[1] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10764, Taiwan
[3] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10764, Taiwan
[4] Ming Hsin Univ Sci & Technol, Dept Mech Engn, Hsinchu 30401, Taiwan
[5] Natl Chung Hsing Univ Educ, Dept Appl Sci, Hsinchu 30014, Taiwan
[6] Nan Kai Inst Technol, Dept Mech Engn, Nantou 54243, Taiwan
关键词
FIELD-INDUCED OXIDATION; CONDUCTING-PROBE; GAAS; NANOFABRICATION; KINETICS; SILICON; SURFACE; DEVICES; MECHANISMS;
D O I
10.1088/0957-4484/17/15/039
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The nanometre-scale oxidation characteristics of a p-GaAs(100) surface are investigated by atomic force microscope (AFM) electrochemical nanolithography with a multiwalled carbon nanotube (MWCNT) probe. The electrochemical parameters, such as anodizing voltages, scanning rate and modulated voltages, and how they affect the creation and growth of the oxide nanostructures are explored. The present results reveal that the initial growth rate (similar to 600 nm s(-1) for 10 V) decreases rapidly as the electric field strength is decreased. The oxide practically ceases to grow as the electric field is reduced to the order of similar to 1.2 x 10(7) V cm(-1). Also, the oxide growth rate depends not only on the electric field strength but also on the applied anodizing voltage. The present results show that the height of the oxide structures can be significantly improved at an applied anodizing voltage of 10 V by using a CNT probe. In addition, Auger electron spectroscopy (AES) measurements performed in the present work confirm that modified structures replace the form of anodizing p-GaAs(100).
引用
收藏
页码:3838 / 3843
页数:6
相关论文
共 50 条
[11]   Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy [J].
Yang, Y. H. ;
Li, W. Z. .
APPLIED PHYSICS LETTERS, 2011, 98 (04)
[12]   Automated Manipulation of Carbon Nanotubes Using Atomic Force Microscopy [J].
Zhang, Chao ;
Wu, Sen ;
Fu, Xing .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (01) :598-602
[13]   Measurements of Electric Potential in GaAs Detectors Using Kelvin Probe Force Microscopy [J].
Kaztaev, O. G. ;
Novikov, V. A. ;
Ponomarev, I. V. .
SIBCON-2009: INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS, 2009, :166-169
[14]   Improved local oxidation of silicon carbide using atomic force microscopy [J].
Jo, Yeong-Deuk ;
Seo, Soo-Hyung ;
Bahng, Wook ;
Kim, Sang-Cheol ;
Kim, Nam-Kyun ;
Kim, Sang-Sig ;
Koo, Sang-Mo .
APPLIED PHYSICS LETTERS, 2010, 96 (08)
[15]   Correlation of atomic force microscopy and photoluminescence analysis of GaAs nanocrystallites elaborated by electrochemical etching of n+ type GaAs [J].
Abdellaoui, T. ;
Bardaoui, A. ;
Daoudi, M. ;
Chtourou, R. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2010, 51 (02)
[16]   Localized Electrochemical Impedance Measurements on Nafion Membranes: Observation and Analysis of Spatially Diverse Proton Transport Using Atomic Force Microscopy [J].
Wang, Xiaojiang ;
Habte, Bereket T. ;
Zhang, Shuomeng ;
Yang, Houhua ;
Zhao, Jing ;
Jiang, Fangming ;
He, Qinggang .
ANALYTICAL CHEMISTRY, 2019, 91 (18) :11678-11686
[17]   Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe [J].
Jiang, Xiaohong ;
Wu, Guoyun ;
Zhou, Jingfang ;
Wang, Shujie ;
Tseng, Ampere A. ;
Du, Zuliang .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-7
[18]   Investigation of Arrays of Photosynthetically Active Heterostructures Using Conductive Probe Atomic Force Microscopy [J].
Economou, Nicholas J. ;
Mubeen, Syed ;
Buratto, Steven K. ;
McFarland, Eric W. .
NANO LETTERS, 2014, 14 (06) :3328-3334
[19]   Enhanced nano-oxidation on a SCl-treated Si surface using atomic force microscopy [J].
Moon, WC ;
Yoshinobu, T ;
Iwasaki, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (7A) :4754-4757
[20]   Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy [J].
Dominiczak, Maguy ;
Otubo, Larissa ;
Alamarguy, David ;
Houze, Frederic ;
Volz, Sebastian ;
Noel, Sophie ;
Bai, Jinbo .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-10