Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material

被引:24
作者
Ezhumalai, D. S. [1 ]
Sriharan, G. [1 ]
Harikrishnan, S. [2 ]
机构
[1] Loyola Inst Technol, Dept Mech Engn, Madras, Tamil Nadu, India
[2] Adhi Coll Engn & Technol, Dept Mech Engn, Dr APJ Abdul Kalam Ctr Adv Res, Sankarapuram, Kancheepuram, India
关键词
Palmitic acid; CuO nanoparticles; Thermal conductivity; Melting; Solidification; CONDUCTIVITY ENHANCEMENT; HEAT-TRANSFER; NANOFLUIDS; PCM; SINGLE;
D O I
10.1016/j.matpr.2018.03.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work aims to study the preparation and thermal energy storage behavior of CuO based composite PCM for thermal energy storage. Composite PCM comprises palmitic acid as base material and CuO nanoparticles (NPs) as supporting materials. Different mass fractions of NPs have been dispersed in the base material so as to determine the maximum thermal conductivity enhancement. SDBS has been selected as the surfactant for ensuring the uniform dispersion of NPs in base material. With the help of DSC measurements, the newly prepared composite PCMs have been tested to determine their phase change temperatures as well as latent heats during melting and solidification. Thermal conductivities of the composite PCMs with all mass fractions of NPs have been measured. Based on the test results, the newly prepared composite PCM could be considered to be a potential candidate for thermal energy storage. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14618 / 14627
页数:10
相关论文
共 30 条
[1]   The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J].
Cui, Yanbin ;
Liu, Caihong ;
Hu, Shan ;
Yu, Xun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (04) :1208-1212
[2]   Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage [J].
Fang, Guiyin ;
Li, Hui ;
Liu, Xu .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 122 (2-3) :533-536
[3]   Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials [J].
Fang, Xiaoming ;
Zhang, Zhengguo ;
Chen, Zhonghua .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (04) :718-723
[4]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615
[5]   Cyclic heat transfer in a novel storage unit of multiple phase change materials [J].
Gong, ZX ;
Mujumdar, AS .
APPLIED THERMAL ENGINEERING, 1996, 16 (10) :807-815
[6]   Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems [J].
Harikrishnan, S. ;
Magesh, S. ;
Kalaiselvam, S. .
THERMOCHIMICA ACTA, 2013, 565 :137-145
[7]   Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material [J].
Harikrishnan, S. ;
Kalaiselvam, S. .
THERMOCHIMICA ACTA, 2012, 533 :46-55
[8]   Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets [J].
Harish, Sivasankaran ;
Orejon, Daniel ;
Takata, Yasuyuki ;
Kohno, Masamichi .
APPLIED THERMAL ENGINEERING, 2015, 80 :205-211
[9]   Thermal properties of myristic acid/graphite nanoplates composite phase change materials [J].
Ince, Seyma ;
Seki, Yoldas ;
Ezan, Mehmet Akif ;
Turgut, Alpaslan ;
Erek, Aytunc .
RENEWABLE ENERGY, 2015, 75 :243-248
[10]   Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives [J].
Jana, Soumen ;
Salehi-Khojin, Amin ;
Zhong, Wei-Hong .
THERMOCHIMICA ACTA, 2007, 462 (1-2) :45-55