Extensions of covariantly finite subcategories revisited

被引:7
作者
He, Jing [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, 36 Lushan Rd, Changsha 410081, Hunan, Peoples R China
关键词
extriangulated category; covariantly finite subcategory;
D O I
10.21136/CMJ.2018.0338-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen (2009) and of a result of R. Gentle, G. Todorov (1996).
引用
收藏
页码:403 / 415
页数:13
相关论文
共 12 条
[1]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[2]   The Grothendieck group of a cluster category [J].
Barot, M. ;
Kussin, D. ;
Lenzing, H. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :33-46
[3]  
Beligiannis A., 2007, MEM AM MATH SOC, V188
[4]   Exact categories [J].
Buehler, Theo .
EXPOSITIONES MATHEMATICAE, 2010, 28 (01) :1-69
[5]   Extensions of covariantly finite subcategories [J].
Chen, Xiao-Wu .
ARCHIV DER MATHEMATIK, 2009, 93 (01) :29-35
[6]  
Gentle R., 1994, REPRESENTATION THEOR, V18, P227
[7]   Silting modules and ring epimorphisms [J].
Hugel, Lidia Angeleri ;
Marks, Frederik ;
Vitoria, Jorge .
ADVANCES IN MATHEMATICS, 2016, 303 :1044-1076
[8]   TILTING BUNDLES ON ORDERS ON Pd [J].
Iyama, Osamu ;
Lerner, Boris .
ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) :147-169
[9]  
Keller B, 2005, DOC MATH, V10, P551
[10]   Homological Systems in Triangulated Categories [J].
Mendoza, O. ;
Santiago, V. .
APPLIED CATEGORICAL STRUCTURES, 2016, 24 (01) :1-35