Ground state solutions of fractional Choquard equations with general potentials and nonlinearities

被引:6
作者
Gao, Zu [1 ]
Tang, Xianhua [1 ]
Chen, Sitong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
Fractional Choquard equations; Ground state solution of Pohozaev-type; Berestycki-Lions-type conditions; Variational methods;
D O I
10.1007/s13398-018-0598-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we consider the following fractional Choquard equation with general potentials and nonlinearities of the form (-Delta)(s)(u) + V(x)u = (I-alpha * F(u))f (u), in R-N, where s is an element of (0, 1), N > 2s, (-Delta)(s) is the fractional Laplacian, alpha is an element of (0, N), potential V is an element of C-1(R-N, [0, infinity)), I-alpha is a Riesz potential, the nonlinearity F satisfies the general Berestycki-Lions-type assumptions. By introducing some new techniques, we establish the existence of ground state solution of Pohozaev-type to the above equation by variational methods.
引用
收藏
页码:2037 / 2057
页数:21
相关论文
共 33 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]   On fractional Schrodinger systems of Choquard type [J].
Bhattarai, Santosh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3197-3229
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]  
Chen J, 2018, ELECTRON J DIFFER EQ, V142, P1
[6]   Ground state solutions for non-autonomous fractional Choquard equations [J].
Chen, Yan-Hong ;
Liu, Chungen .
NONLINEARITY, 2016, 29 (06) :1827-1842
[7]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248
[8]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Dipierro, S. ;
Palatucci, G. ;
Valdinoci, E. .
MATEMATICHE, 2013, 68 (01) :201-216