On the equivalence of codes over finite rings

被引:20
作者
Dinh, HQ [1 ]
López-Permouth, SR [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
equivalence of codes; codes over finite rings; finite Frobenius rings;
D O I
10.1007/s00200-004-0149-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is known that if a finite ring R is Frobenius then equivalences of linear codes over R are always monomial transformations. Among other results, in this paper we show that the converse of this result holds for finite local and homogeneous semilocal rings. Namely, it is shown that for every finite ring R which is a direct sum of local and homogeneous semilocal subrings, if every Hamming-weight preserving R-linear transformation of a codeC(1) onto a code C-2 is a monomial transformation then R is a Frobenius ring.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 33 条
[1]   Applications of coding theory to the construction of modular lattices [J].
Bachoc, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) :92-119
[2]   ELEMENTARY PROOF OF MACWILLIAMS THEOREM ON EQUIVALENCE OF CODES [J].
BOGART, K ;
GOLDBERG, D ;
GORDON, J .
INFORMATION AND CONTROL, 1978, 37 (01) :19-22
[3]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[4]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[5]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[6]   Homogeneous semilocal rings [J].
Corisello, R ;
Facchini, A .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) :1807-1819
[7]  
DINH HQ, IN PRESS FINITE FIEL
[8]  
DINH HQ, IN PRESS COMM ALGEBR
[9]  
DINH HQ, IN PRESS IEEE T INFO
[10]  
FAITH C, 1976, GRUNDL MATH WISS, V191