Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells

被引:5
|
作者
Kurosawa, R. [1 ]
Morita, K. [1 ]
Kohda, M. [2 ]
Ishitani, Y. [1 ]
机构
[1] Chiba Univ, Grad Sch Elect & Elect Engn, Chiba 2638522, Japan
[2] Tohoku Univ, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
关键词
MANIPULATION;
D O I
10.1063/1.4935044
中图分类号
O59 [应用物理学];
学科分类号
摘要
We performed a numerical simulation of the spatial behavior of spin precession in a persistent spin helix (PSH) state at high temperatures (>150 K) in a two-dimensional electron gas of GaAs and InGaAs (001)-semiconductor quantum wells (QWs). To describe the spin dynamics of the PSH state at high temperatures, the effect of a cubic Dresselhaus spin-orbit interaction (SOI) that destroys the PSH state was added to the balanced Rashba and linear Dresselhaus SOI. Furthermore, longitudinal optical and acoustic phonon scattering were taken into account in the momentum scattering calculations. The simulation results indicate that the PSH state in the InGaAs QW persists for over 500 ps because of the small effective mass of the electron, even at room temperature. We also reveal that it is closer to the ideal PSH state when the Rashba strength (alpha) is controlled to the renormalized linear Dresselhaus SOI strength (-(beta) over tilde) rather than the linear Dresselhaus SOI strength (-beta). (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Effect of spin-orbit interaction on cyclotron resonance in InAs quantum wells
    Vasilyev, YB
    Suchalkin, SD
    Ivanov, SV
    Meltser, BY
    Kop'ev, PS
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 240 (03): : R8 - R10
  • [32] Electric-Field Induced Spin Excitation in Quantum Wells with Rashba–Dresselhaus Spin-Orbit Coupling
    P. Kleinert
    V. V. Bryksin
    Journal of Superconductivity and Novel Magnetism, 2010, 23 : 139 - 140
  • [33] Anisotropic spin transport in GaAs quantum wells in the presence of competing Dresselhaus and Rashba spin-orbit coupling
    Cheng, J. L.
    Wu, M. W.
    Lima, I. C. da Cunha
    PHYSICAL REVIEW B, 2007, 75 (20)
  • [34] Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus Dresselhaus spin-orbit coupling
    Prabhakar, Sanjay
    Melnik, Roderick
    Bonilla, Luis L.
    PHYSICAL REVIEW B, 2013, 87 (23)
  • [35] Inelastic light scattering by intrasubband spin-density excitations in GaAs-AlGaAs quantum wells with balanced Bychkov-Rashba and Dresselhaus spin-orbit interaction: Quantitative determination of the spin-orbit field
    Gelfert, S.
    Frankerl, C.
    Reichl, C.
    Schuh, D.
    Salis, G.
    Wegscheider, W.
    Bougeard, D.
    Korn, T.
    Schueller, C.
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [36] SPIN TRANSPORT FOR A QUANTUM WIRE WITH WEAK DRESSELHAUS SPIN-ORBIT COUPLING
    Fu, Xi
    Chen, Zeshun
    Zhong, Feng
    Kong, Yonghong
    MODERN PHYSICS LETTERS B, 2011, 25 (07): : 487 - 496
  • [37] Spin accumulation in diffusive conductors with Rashba and Dresselhaus spin-orbit interaction
    Duckheim, Mathias
    Loss, Daniel
    Scheid, Matthias
    Richter, Klaus
    Adagideli, Inanc
    Jacquod, Philippe
    PHYSICAL REVIEW B, 2010, 81 (08)
  • [38] Spin-orbit interaction and spin-charge interference in resonant Raman scattering from III-V semiconductor quantum wells
    Froltsov, VA
    Mal'shukov, AG
    Chao, KA
    PHYSICAL REVIEW B, 2001, 64 (07)
  • [39] Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry
    Sasaki, A.
    Nonaka, S.
    Kunihashi, Y.
    Kohda, M.
    Bauernfeind, T.
    Dollinger, T.
    Richter, K.
    Nitta, J.
    NATURE NANOTECHNOLOGY, 2014, 9 (09) : 703 - 709
  • [40] Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry
    Sasaki A.
    Nonaka S.
    Kunihashi Y.
    Kohda M.
    Bauernfeind T.
    Dollinger T.
    Richter K.
    Nitta J.
    Nature Nanotechnology, 2014, 9 (9) : 703 - 709