Lattice points in large convex bodies

被引:34
作者
Müller, W [1 ]
机构
[1] Graz Univ, Inst Stat, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 1999年 / 128卷 / 04期
关键词
lattice points; exponential sums;
D O I
10.1007/s006050050066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by A(Bs) (x) the number of points of the lattice Z(s) in the "blown up" domain xB(s), where B-s is a convex body in R-s (s greater than or equal to 3) whose boundary is smooth and has nonzero curvature throughout. It is proved that for every fixed epsilon > 0 A(Bs) (x) = vol(B-s)x(s) + O(x(s-2+lambda(s)+epsilon)), where lambda(s) = (s + 4)/(s(2) + s + 2) for s greater than or equal to 5, lambda(4) = 6/17 and lambda(3) = 20/43. This improves a classic result of E. HLAWKA [8] and its refinements due to E. KRATZEL and W. G. NOWAK ([14], [15]). The proof uses a multidimensional variant of the method of van der Corput for the estimation of exponential sums.
引用
收藏
页码:315 / 330
页数:16
相关论文
共 20 条
[1]  
Bentkus V, 1997, ACTA ARITH, V80, P101
[2]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[3]  
BOCHNER S, 1932, MATH ANN, V106, P55
[4]  
BONNIESEN T, 1934, THEORIE KONVEXEN KOR
[5]  
FRICKER F, 1982, EINFUHRUNG GITTERPUN
[6]  
Graham S.W., 1991, VANDERCORPUTS METHOD
[7]   THE GROWTH-RATE OF THE DEDEKIND ZETA-FUNCTION ON THE CRITICAL LINE [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1988, 49 (04) :323-339
[8]  
HLAWKA E, 1950, MONATSH MATH, V54, P81, DOI DOI 10.1007/BF01304101
[9]  
HLAWKA E, 1950, MONATSH MATH, V54, P1
[10]  
Hormander L., 1983, The Analysis of Linear Partial Differential Operators I