Monotone Circuit Lower Bounds from Resolution

被引:7
作者
Garg, Ankit [1 ]
Goos, Mika [2 ]
Kamath, Pritish [3 ]
Sokolov, Dmitry [4 ]
机构
[1] Microsoft Res India, Bengaluru, Karnataka, India
[2] Ecole Polytech Fed Lausanne, Theory Grp, Lausanne, Switzerland
[3] Toyota Technol Inst Chicago, Chicago, IL USA
[4] KTH Royal Inst Technol, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
circuit complexity; communication complexity; proof complexity; COMMUNICATION; COMPLEXITY; PROOFS; SIZE; HARD;
D O I
10.4086/toc.2020.v016a013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols-or, equivalently, that a monotone function associated with F has large monotone circuit complexity. Our result extends to monotone real circuits, which yields new lower bounds for the Cutting Planes proof system.
引用
收藏
页数:30
相关论文
共 56 条
[1]  
ALEXANDER A, 1997, MATH PAUL ERDOS, VI, P385, DOI [10.1007/978-3-642-60408-9_28, DOI 10.1007/978-3-642-60408-9_28]
[2]   THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS [J].
ALON, N ;
BOPPANA, RB .
COMBINATORICA, 1987, 7 (01) :1-22
[3]   The potential of the approximation method [J].
Amano, K ;
Maruoka, A .
SIAM JOURNAL ON COMPUTING, 2004, 33 (02) :433-447
[4]  
ANDREEV AE, 1985, DOKL AKAD NAUK SSSR+, V282, P1033
[5]  
[Anonymous], 2001, Current Trends in Theoretical Computer Science Entering the 21st Century
[6]   A combinatorial characterization of resolution width [J].
Atserias, Albert ;
Dalmau, Victor .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (03) :323-334
[7]   Lower bounds for Lovasz-Schrijver systems and beyond follow from multiparty communication complexity [J].
Beame, Paul ;
Pitassi, Toniann ;
Segerlind, Nathan .
SIAM JOURNAL ON COMPUTING, 2007, 37 (03) :845-869
[8]  
Beame P, 2010, ACM S THEORY COMPUT, P87
[9]   Short proofs are narrow - Resolution made simple [J].
Ben-Sasson, E ;
Wigderson, A .
JOURNAL OF THE ACM, 2001, 48 (02) :149-169
[10]   Symmetric approximation arguments for monotone lower bounds without sunflowers [J].
Berg, C ;
Ulfberg, S .
COMPUTATIONAL COMPLEXITY, 1999, 8 (01) :1-20