Generalizations of Fuzzy Linguistic Control Points in Geometric Design

被引:2
作者
Sallehuddin, M. H. [1 ]
Wahab, A. F. [1 ]
Gobithaasan, R. U. [1 ]
机构
[1] Univ Malaysia Terengganu, Sch Informat & Appl Math, Kuala Terengganu 21030, Malaysia
来源
PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY | 2014年 / 1605卷
关键词
control points; linguistic; spline; uncertainty; MODEL;
D O I
10.1063/1.4887596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.
引用
收藏
页码:244 / 249
页数:6
相关论文
共 17 条
[1]   Modeling uncertain data with fuzzy B-splines [J].
Anile, AM ;
Falcidieno, B ;
Gallo, G ;
Spagnuolo, M ;
Spinello, S .
FUZZY SETS AND SYSTEMS, 2000, 113 (03) :397-410
[2]  
Chandramohan A., 2006, DISCRETE DYNAMICS NA
[3]   Fuzzy B-splines: A surface model encapsulating uncertainty [J].
Gallo, G ;
Spagnuolo, M ;
Spinello, S .
GRAPHICAL MODELS, 2000, 62 (01) :40-55
[4]  
Gallo G., 1998, Journal of Geographic Information and Decision Analysis, V2, P194
[5]  
Gobithaasan RU, 2011, SAINS MALAYS, V40, P1301
[6]  
Husain M. S., 2010, FUZZY THEORY APPL, P21
[7]   A parametric representation of linguistic hedges in Zadeh's fuzzy logic [J].
Huynh, VN ;
Ho, TB ;
Nakamori, Y .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2002, 30 (03) :203-223
[8]   A model for CAGD using fuzzy logic [J].
Jacas, J ;
Monreal, A ;
Recasens, J .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1997, 16 (3-4) :289-308
[9]   Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms [J].
Liu, BD ;
Chen, CY ;
Tsao, JY .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (01) :32-53
[10]  
Martine D. C., 2004, INFORM SCI, V160, P173