Arens regularity for quotients Ap(E) of the Herz algebra

被引:5
作者
Graham, CC
机构
[1] Bowen Island, BC V0N 1G0
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0024609302001121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If the subset E of T supports a synthesizable p-pseudofunction T, then the restriction A(p)(E) to E of the Herz algebra on T is not Arens regular. The proof is direct, by brute force, and does not show the existence of Day points for A(p)(E).
引用
收藏
页码:457 / 468
页数:12
相关论文
共 19 条
[1]  
[Anonymous], ENSEMBLES PARFAITS S
[2]   THE ADJOINT OF A BILINEAR OPERATION [J].
ARENS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :839-848
[3]  
CIVIN P, 1961, PAC J MATH, V11, P847
[4]  
Edwards R, 1977, LITTLEWOOD PALEY MUL
[5]   ARENS REGULARITY AND DISCRETE-GROUPS [J].
FORREST, B .
PACIFIC JOURNAL OF MATHEMATICS, 1991, 151 (02) :217-227
[6]   ARENS REGULARITY AND THE AP(G) ALGEBRAS [J].
FORREST, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :595-598
[7]  
Graham C. C., 1979, ESSAYS COMMUTATIVE H
[8]   Arens regularity and the second dual of certain quotients of the Fourier algebra [J].
Graham, CC .
QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 :13-24
[9]   Arens regularity and weak sequential completeness for quotients of the Fourier algebra [J].
Graham, CC .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (04) :712-740