Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting

被引:190
作者
Chimene, David [1 ]
Peak, Charles W. [1 ]
Gentry, James L. [1 ]
Carrow, James K. [1 ]
Cross, Lauren M. [1 ]
Mondragon, Eli [1 ]
Cardoso, Guinea B. [1 ]
Kaunas, Roland [1 ]
Gaharwar, Akhilesh K. [1 ,2 ,3 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Ctr Remote Hlth & Technol, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
bioinks; nanocomposites; bioprinting; ionic-covalent entanglement (ICE) network; hydrogels; BIOMEDICAL APPLICATIONS; NANOCOMPOSITE HYDROGELS; TISSUE CONSTRUCTS; KAPPA-CARRAGEENAN; MATERIALS SCIENCE; SYSTEM; BIOFABRICATION; SCAFFOLDS; DELIVERY; GELATION;
D O I
10.1021/acsami.7b19808
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce an enhanced nanoengineered ionic-covalent entanglement (NICE) bioink for the fabrication of mechanically stiff and elastomeric 3D biostructures. NICE bioink formulations combine nanocomposite and ionic covalent entanglement (ICE) strengthening mechanisms to print customizable cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness. Nano composite and ICE strengthening mechanisms complement each other through synergistic interactions, improving mechanical strength, elasticity, toughness, and flow properties beyond the sum of the effects of either reinforcement technique alone. Herschel-Bulkley flow behavior shields encapsulated cells from excessive shear stresses during extrusion. The encapsulated cells readily proliferate and maintain high cell viability over 120 days within the 3D-printed structure, which is vital for long-term tissue regeneration. A unique aspect of the NICE bioink is its ability to print much taller structures, with higher aspect ratios, than can be achieved with conventional bioinks without requiring secondary supports. We envision that NICE bioinks can be used to bioprint complex, large-scale, cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness for applications in custom bioprinted scaffolds and tissue engineered implants.
引用
收藏
页码:9957 / 9968
页数:12
相关论文
共 54 条
[1]   Extrusion printing of ionic-covalent entanglement hydrogels with high toughness [J].
Bakarich, Shannon E. ;
Panhuis, Marc In Het ;
Beirne, Stephen ;
Wallace, Gordon G. ;
Spinks, Geoffrey M. .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (38) :4939-4946
[2]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[3]   3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties [J].
Bootsma, Katherine ;
Fitzgerald, Martha M. ;
Free, Brandon ;
Dimbath, Elizabeth ;
Conjerti, Joe ;
Reese, Greg ;
Konkolewicz, Dominik ;
Berberich, Jason A. ;
Sparks, Jessica L. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 70 :84-94
[4]   Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid [J].
Campos, Daniela F. Duarte ;
Blaeser, Andreas ;
Weber, Michael ;
Jaekel, Joerg ;
Neuss, Sabine ;
Jahnen-Dechent, Wilhelm ;
Fischer, Horst .
BIOFABRICATION, 2013, 5 (01)
[5]   Advanced Bioinks for 3D Printing: A Materials Science Perspective [J].
Chimene, David ;
Lennox, Kimberly K. ;
Kaunas, Roland R. ;
Gaharwar, Akhilesh K. .
ANNALS OF BIOMEDICAL ENGINEERING, 2016, 44 (06) :2090-2102
[6]   Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects [J].
Chimene, David ;
Alge, Daniel L. ;
Gaharwar, Akhilesh K. .
ADVANCED MATERIALS, 2015, 27 (45) :7261-7284
[7]   Bio-ink properties and printability for extrusion printing living cells [J].
Chung, Johnson H. Y. ;
Naficy, Sina ;
Yue, Zhilian ;
Kapsa, Robert ;
Quigley, Anita ;
Moulton, Simon E. ;
Wallace, Gordon G. .
BIOMATERIALS SCIENCE, 2013, 1 (07) :763-773
[8]   Microfl uidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink [J].
Colosi, Cristina ;
Shin, Su Ryon ;
Manoharan, Vijayan ;
Massa, Solange ;
Costantini, Marco ;
Barbetta, Andrea ;
Dokmeci, Mehmet Remzi ;
Dentini, Mariella ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2016, 28 (04) :677-684
[9]   Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces [J].
Cross, Lauren M. ;
Thakur, Ashish ;
Jalili, Nima A. ;
Detamore, Michael ;
Gaharwar, Akhilesh K. .
ACTA BIOMATERIALIA, 2016, 42 :2-17
[10]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926