Thermal stability of aluminum oxide nanoparticles: role of oxygen concentration

被引:6
作者
Ramirez, Max [1 ,2 ]
Gonzalez, Rafael I. [2 ,3 ]
Baltazar, Samuel E. [2 ,4 ]
Rojas-Nunez, Javier [2 ,4 ]
Allende, Sebastian [2 ,4 ]
Alejandro Valdivia, Juan [1 ,2 ]
Rogan, Jose [1 ,2 ]
Kiwi, Miguel [1 ,2 ]
Valencia, Felipe J. [1 ,2 ,5 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Fis, Casilla 653, Santiago 7800024, Chile
[2] CEDENNA, Ctr Desarrollo Nanociencia & Nanotecnol, Avda Ecuador 3493, Santiago 9170124, Chile
[3] Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago, Chile
[4] Univ Santiago Chile, Dept Fis, Av Ecuador 3493, Santiago 9170124, Chile
[5] Univ Mayor, Fac Ciencias, DAiTA Lab, Santiago, Chile
关键词
MOLECULAR-DYNAMICS SIMULATIONS; CORE-SHELL; OXIDATION; REAXFF; COMBUSTION; RANGE; PARTICLES; IGNITION; SURFACES; CLUSTERS;
D O I
10.1039/c8qi01398e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Oxygen absorption and the thermal stability of Al-147 nanoparticles were studied by means of classical molecular dynamics simulations and Monte Carlo methods. The results suggest that for the studied sizes, oxygen incorporation yields an Al2O3 nanoparticle with a Janus-like morphology, contrary to the expected core-shell nanostructure observed in simulations and experiments of nanometer-size nanoparticles. A simulated annealing, introduced to support this assumption, shows that the Janus-like morphology has a lower energy than that of Al@Al2O3 with a core@shell conformation. Also, the thermal behavior of a Janus-like Al/Al2O3 nanoparticle as a function of oxygen concentration was investigated. It is observed that the partial oxidation reduces the nanoparticle melting temperature because the number of pure aluminum atoms is reduced. In fact, the melting point can be as low as 400 K for an Al147O30 nanoparticle. The melting process leads to a solid alumina region that coexists with liquid-like aluminum nanoparticles. The oxide never adopts a protective shell covering configuration of the aluminum nanoparticle.
引用
收藏
页码:1701 / 1706
页数:6
相关论文
共 55 条
[1]   Molecular dynamics simulations of the melting of aluminum nanoparticles [J].
Alavi, S ;
Thompson, DL .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (04) :1518-1523
[2]   Structural relaxation made simple [J].
Bitzek, Erik ;
Koskinen, Pekka ;
Gaehler, Franz ;
Moseler, Michael ;
Gumbsch, Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[3]   THERMODYNAMICAL SIZE EFFECT AND THE STRUCTURE OF METALLIC CLUSTERS [J].
BOREL, JP .
SURFACE SCIENCE, 1981, 106 (1-3) :1-9
[4]   Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms [J].
Breaux, GA ;
Neal, CM ;
Cao, B ;
Jarrold, MF .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[5]   Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers [J].
Campbell, T ;
Kalia, RK ;
Nakano, A ;
Vashishta, P ;
Ogata, S ;
Rodgers, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (24) :4866-4869
[6]   Oxidation of aluminum nanoclusters [J].
Campbell, TJ ;
Aral, G ;
Ogata, S ;
Kalia, RK ;
Nakano, A ;
Vashishta, P .
PHYSICAL REVIEW B, 2005, 71 (20)
[7]   Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis [J].
Campelo, Juan M. ;
Luna, Diego ;
Luque, Rafael ;
Marinas, Jose M. ;
Romero, Antonio A. .
CHEMSUSCHEM, 2009, 2 (01) :18-45
[8]   Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles [J].
Chan, George H. ;
Zhao, Jing ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (36) :13958-13963
[9]   Oxidation Mechanism of Aluminum Nanopowders [J].
Coulet, Marie-Vanessa ;
Rufino, Benoit ;
Esposito, Pierre-Henry ;
Neisius, Thomas ;
Isnard, Olivier ;
Denoyel, Renaud .
Journal of Physical Chemistry C, 2015, 119 (44) :25063-25070
[10]   Hydrogen absorption in Pd nanoparticles of different shapes [J].
Crespo, Eduardo A. ;
Ruda, Margarita ;
Ramos de Debiaggi, Susana ;
Bringa, Eduardo M. ;
Braschi, Fabian U. ;
Bertolino, Graciela .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) :14831-14837