Bifurcation in coupled Hopf oscillators

被引:0
|
作者
Sterpu, Mihaela [1 ]
Rocsoreanu, Carmen [1 ]
机构
[1] Univ Craiova, Dept Math & Comp Sci, 13 AI Cuza, RO-200585 Craiova, Romania
来源
MATHEMATICAL ANALYSIS AND APPLICATIONS | 2006年 / 835卷
关键词
Hopf bifurcation; coupled dynamical systems; Liapunov coefficients;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two identical dynamical systems, representing the normal form corresponding to the Hopf bifurcation, were coupled using two parameters. The 4D dynamical system obtained possesses additional equilibria. Our study concerns the bifurcations of this system around the origin. We found that Hopf bifurcation takes place in two cases and it is of the same type as the Hopf bifurcation of the single model. In the first case the center manifold is a 2-plane and the limit cycle does not depend on the coupling parameters. In the second case, if the coupling parameters are equal, limit cycles with four regimes of behavior emerge, while if the coupling parameters are different, limit cycles with eight regimes of behavior are emphasized and different amplitudes of the oscillations occur in addition. For some values of the parameters, other bifurcations are present: degenerated fold bifurcation, degenerated double-zero bifurcation and symmetric Hopf bifurcation.
引用
收藏
页码:133 / +
页数:3
相关论文
共 50 条
  • [41] The Cusp-Hopf bifurcation
    Harlim, J.
    Langford, W. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2547 - 2570
  • [42] Hopf bifurcation of the sunflower equation
    Li, Junyu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2574 - 2580
  • [43] Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays
    Karaoglu, Esra
    Yilmaz, Enes
    Merdan, Huseyin
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1039 - 1051
  • [45] Hamiltonian Hopf Bifurcation with Symmetry
    Pascal Chossat
    Juan-Pablo Ortega
    Tudor S. Ratiu
    Archive for Rational Mechanics and Analysis, 2002, 163 : 1 - 33
  • [46] Hopf bifurcation with additive noise
    Thai Son Doan
    Engel, Maximilian
    Lamb, Jeroen S. W.
    Rasmussen, Martin
    NONLINEARITY, 2018, 31 (10) : 4567 - 4601
  • [47] Hopf bifurcation of a chemostat model
    Qu, Rongning
    Li, Xiaofang
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3541 - 3552
  • [48] Turing Instabilities at Hopf Bifurcation
    Ricard, M. R.
    Mischler, S.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (05) : 467 - 496
  • [49] Parametric Resonance of Hopf Bifurcation
    Richard Rand
    Albert Barcilon
    Tina Morrison
    Nonlinear Dynamics, 2005, 39 : 411 - 421
  • [50] Parametric resonance of Hopf bifurcation
    Rand, R
    Barcilon, A
    Morrison, T
    NONLINEAR DYNAMICS, 2005, 39 (04) : 411 - 421