Hybrid Evolutionary Multiobjective Fuzzy C-Medoids Clustering of Categorical Data

被引:0
|
作者
Mukhopadhyay, Anirban [1 ]
Maulik, Ujjwal [2 ]
Bandyopadhyay, Sanghamitra [3 ]
机构
[1] Univ Kalyani, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
关键词
Multiobjective Optimization; Pareto optimality; fuzzy C-medoids clustering; multiobjective automatic fuzzy clustering; categorical data; PIXEL CLASSIFICATION; GENETIC ALGORITHM; OPTIMIZATION; IMAGERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we have considered the problem of fuzzy clustering of categorical data. In this regard, the well-known fuzzy C-medoids algorithm for categorical data clustering is posed as a multiobjective optimization problem where the cluster medoids are encoded in the chromosomes of a multiobjective genetic algorithm. The chromosomes are of variable lengths to permit automatic evolution of the number of clusters. The chromosomes are updated through the medoid updating process of fuzzy C-medoids clustering. The fuzzy cluster variance and cluster separation are taken as the two objectives to be optimized simultaneously. The performance of the proposed algorithm has been compared with that of different well-known categorical data clustering algorithms and demonstrated for a variety of synthetic and real-life categorical data sets.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [21] Two weighted c-medoids batch SOM algorithms for dissimilarity data
    Marino, Laura M. P.
    de Carvalho, Francisco de A. T.
    INFORMATION SCIENCES, 2022, 607 : 603 - 619
  • [22] Fuzzy c-ordered medoids clustering for interval-valued data
    D'Urso, Pierpaolo
    Leski, Jacek M.
    PATTERN RECOGNITION, 2016, 58 : 49 - 67
  • [23] Incremental Fuzzy Clustering With Multiple Medoids for Large Data
    Wang, Yangtao
    Chen, Lihui
    Mei, Jian-Ping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (06) : 1557 - 1568
  • [24] Formulations of fuzzy clustering for categorical data
    Umayahara, Kazutaka
    Miyamoto, Sadaaki
    Nakamori, Yoshiteru
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (01): : 83 - 94
  • [25] Fuzzy rough clustering for categorical data
    Xu, Shuliang
    Liu, Shenglan
    Zhou, Jian
    Feng, Lin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3213 - 3223
  • [26] Fuzzy rough clustering for categorical data
    Shuliang Xu
    Shenglan Liu
    Jian Zhou
    Lin Feng
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 3213 - 3223
  • [27] Fuzzy clustering for categorical multivariate data
    Oh, CH
    Honda, K
    Ichihashi, H
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 2154 - 2159
  • [28] Fuzzy clustering of categorical data using fuzzy centroids
    Kim, DW
    Lee, KH
    Lee, D
    PATTERN RECOGNITION LETTERS, 2004, 25 (11) : 1263 - 1271
  • [29] Multiobjective Genetic Algorithm-Based Fuzzy Clustering of Categorical Attributes
    Mukhopadhyay, Anirban
    Maulik, Ujjwal
    Bandyopadhyay, Sanghamitra
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (05) : 991 - 1005
  • [30] THE ANALYSIS OF INCOMPLETE DATASET USING FUZZY C-MEDOIDS ALGORITHM WITH A CASE STUDY OF PHYSICAL EXAMINATION DATASET
    Chiu, Ming-Chuan
    Chen, Yi-Wen
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2018, 25 (01): : 67 - 76