Hybrid Evolutionary Multiobjective Fuzzy C-Medoids Clustering of Categorical Data

被引:0
作者
Mukhopadhyay, Anirban [1 ]
Maulik, Ujjwal [2 ]
Bandyopadhyay, Sanghamitra [3 ]
机构
[1] Univ Kalyani, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
来源
PROCEEDINGS OF THE 2013 IEEE WORKSHOP ON HYBRID INTELLIGENT MODELS AND APPLICATIONS (HIMA) | 2013年
关键词
Multiobjective Optimization; Pareto optimality; fuzzy C-medoids clustering; multiobjective automatic fuzzy clustering; categorical data; PIXEL CLASSIFICATION; GENETIC ALGORITHM; OPTIMIZATION; IMAGERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we have considered the problem of fuzzy clustering of categorical data. In this regard, the well-known fuzzy C-medoids algorithm for categorical data clustering is posed as a multiobjective optimization problem where the cluster medoids are encoded in the chromosomes of a multiobjective genetic algorithm. The chromosomes are of variable lengths to permit automatic evolution of the number of clusters. The chromosomes are updated through the medoid updating process of fuzzy C-medoids clustering. The fuzzy cluster variance and cluster separation are taken as the two objectives to be optimized simultaneously. The performance of the proposed algorithm has been compared with that of different well-known categorical data clustering algorithms and demonstrated for a variety of synthetic and real-life categorical data sets.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 28 条
[1]  
[Anonymous], P IEEE INT FUZZ SYST
[2]  
[Anonymous], 2011, Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics
[3]  
[Anonymous], ACM COMPUTING SURVEY
[4]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[5]   A simulated annealing-based multiobjective optimization algorithm: AMOSA [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna ;
Maulik, Ujjwal ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) :269-283
[6]   Multiobjective genetic clustering for pixel classification in remote sensing imagery [J].
Bandyopadhyay, Sanghamitra ;
Maulik, Ujjwal ;
Mukhopadhyay, Anirban .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05) :1506-1511
[7]  
Coello Coello CA., 1999, KNOWL INF SYST, V1, P269, DOI [10.1007/BF03325101, DOI 10.1007/BF03325101]
[8]   Evolutionary multi-objective optimization: A historical view of the field [J].
Coello Coello, Carlos A. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (01) :28-36
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
Glover F., 1998, Tabu Search, DOI DOI 10.1007/978-1-4615-6089-0_1