Hybrid Evolutionary Multiobjective Fuzzy C-Medoids Clustering of Categorical Data

被引:0
|
作者
Mukhopadhyay, Anirban [1 ]
Maulik, Ujjwal [2 ]
Bandyopadhyay, Sanghamitra [3 ]
机构
[1] Univ Kalyani, Dept Comp Sci & Engn, Kalyani 741235, W Bengal, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
[3] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
关键词
Multiobjective Optimization; Pareto optimality; fuzzy C-medoids clustering; multiobjective automatic fuzzy clustering; categorical data; PIXEL CLASSIFICATION; GENETIC ALGORITHM; OPTIMIZATION; IMAGERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we have considered the problem of fuzzy clustering of categorical data. In this regard, the well-known fuzzy C-medoids algorithm for categorical data clustering is posed as a multiobjective optimization problem where the cluster medoids are encoded in the chromosomes of a multiobjective genetic algorithm. The chromosomes are of variable lengths to permit automatic evolution of the number of clusters. The chromosomes are updated through the medoid updating process of fuzzy C-medoids clustering. The fuzzy cluster variance and cluster separation are taken as the two objectives to be optimized simultaneously. The performance of the proposed algorithm has been compared with that of different well-known categorical data clustering algorithms and demonstrated for a variety of synthetic and real-life categorical data sets.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [1] Linear Fuzzy Clustering of Relational Data Based on Extended Fuzzy c-Medoids
    Haga, Naoki
    Honda, Katsuhiro
    Ichihashi, Hidetomo
    Notsu, Akira
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 366 - 371
  • [2] A Fuzzy c-Medoids Clustering Algorithm Based on Multiple Dissimilarity Matrices
    de Carvalho, Francisco de A. T.
    de Melo, Filipe M.
    Lechevallier, Yves
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 107 - 112
  • [3] Distributed Big Data Clustering using MapReduce-based Fuzzy C-Medoids
    Sardar T.H.
    Ansari Z.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (01) : 73 - 82
  • [4] Fuzzy c-medoids Method based on JS']JS-divergence for Uncertain Data Clustering
    Wang, Yingxu
    Dong, Jiwen
    Zhou, Jin
    Wang, Dong
    Wang, Lin
    Han, Shiyuan
    Chen, Yuehui
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 312 - 315
  • [5] Fuzzy C-Medoids Clustering Based on Interval Type-2 Inituitionistic Fuzzy Sets
    Nguyen Anh Cuong
    Dinh Sinh Mai
    Do Viet Duc
    Dang Trong Hop
    Long Thanh Ngo
    Pham The Long
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 262 - 266
  • [6] Decoy Clustering through Graded Possibilistic c-Medoids
    Ferone, Alessio
    Maratea, Antonio
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [7] A Fast Weighted Fuzzy C-Medoids Clustering for Time Series Data Based on P-Splines
    Xu, Jiucheng
    Hou, Qinchen
    Qu, Kanglin
    Sun, Yuanhao
    Meng, Xiangru
    SENSORS, 2022, 22 (16)
  • [8] Hard and Fuzzy c-Medoids for Asymmetric Networks
    Kaizu, Yousuke
    Miyamoto, Sadaaki
    Endo, Yasunori
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 435 - 440
  • [9] Multiobjective clustering algorithm with fuzzy centroids for categorical data
    Zhou Z.
    Zhu S.
    Zhang D.
    1600, Science Press (53): : 2594 - 2606
  • [10] ECMdd: Evidential c-medoids clustering with multiple prototypes
    Zhou, Kuang
    Martin, Arnaud
    Pan, Quan
    Liu, Zhun-ga
    PATTERN RECOGNITION, 2016, 60 : 239 - 257