Ti-rich precipitate evolution in vanadium-based alloys during annealing above 400 °C

被引:31
作者
Impagnatiello, A. [1 ,2 ]
Toyama, T. [3 ]
Jimenez-Melero, E. [1 ,2 ]
机构
[1] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Dalton Cumbrian Facil, Westlakes Sci & Technol Pk, Moor Row CA24 3HA, England
[3] Tohoku Univ, Oarai Ctr, Inst Mat Res, Oarai, Ibaraki 3111313, Japan
基金
英国工程与自然科学研究理事会;
关键词
Refractory metal; Crystalline oxides; Positron annihilation; Electron microscopy; Nuclear fusion reactor; REACTOR STRUCTURAL-MATERIALS; IRRADIATION-INDUCED DEFECTS; POSITRON-ANNIHILATION; FUSION-REACTOR; OXYGEN; DIFFUSION; BEHAVIOR; RECRYSTALLIZATION; TEMPERATURE; MICROVOIDS;
D O I
10.1016/j.jnucmat.2016.12.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have assessed the plate-like TiO precipitate evolution in V-4Ti and V-4Ti-4Cr alloys during isochronal annealing above 400 degrees C, by combining Vickers hardness, positron lifetime and coincidence Doppler broadening measurements. Our results reveal the formation of additional TiO precipitates in both alloys at temperatures of 450-600 degrees C in both alloys. The implanted positrons become trapped at the nm-thick TiO/matrix interface, and act as effective probes of the concomitant annealing of vacancies taking place inside the TiO precipitates above 550 degrees C in V-4Ti alloy. The presence of Cr in the ternary alloy not only retards the recovery of dislocations, but also enhances the oxygen diffusivity and therefore decreases the vacancy content in the TiO precipitates. These results will impact the expected alloy stability and capacity to bind light elements in the operational temperature window of these alloys for fusion reaction applications. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 51 条
[1]   Effect of lattice structure on the positron annihilation with inner shell electrons [J].
Alatalo, M ;
Asoka-Kumar, P ;
Ghosh, VJ ;
Nielsen, B ;
Lynn, KG ;
Kruseman, AC ;
Van Veen, A ;
Korhonen, T ;
Puska, MJ .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1998, 59 (01) :55-59
[2]  
Ammon R.L., 1980, INT MET REV, V5, P255
[3]   Increased elemental specificity of positron annihilation spectra [J].
AsokaKumar, P ;
Alatalo, M ;
Ghosh, VJ ;
Kruseman, AC ;
Nielsen, B ;
Lynn, KG .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2097-2100
[4]   From materials development to their test in IFMIF: an overview [J].
Baluc, N. ;
Schaeublin, R. ;
Spaetig, P. ;
Ilchuk, N. ;
Veleva, L. ;
Oksiuta, Z. ;
Theile, J. ;
Tran, M. Q. .
NUCLEAR FUSION, 2011, 51 (11)
[5]   ELECTRICAL AND MAGNETIC PROPERTIES OF TIO AND VO [J].
BANUS, MD ;
REED, TB ;
STRAUSS, AJ .
PHYSICAL REVIEW B, 1972, 5 (08) :2775-&
[6]  
Borovitskaya I.V., 2015, INORG MAT APPL RES, V6, P133
[7]   LOW ACTIVATION STRUCTURAL-MATERIALS FOR FUSION [J].
BUTTERWORTH, GJ .
FUSION ENGINEERING AND DESIGN, 1989, 11 (1-2) :231-244
[8]   Overview of the vanadium alloy researches for fusion reactors [J].
Chen, J. M. ;
Chernov, V. M. ;
Kurtz, R. J. ;
Muroga, T. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :289-294
[9]   Development and testing of vanadium alloys for fusion applications [J].
Chung, HM ;
Loomis, BA ;
Smith, DL .
JOURNAL OF NUCLEAR MATERIALS, 1996, 239 (1-3) :139-156
[10]   NUCLEAR-DATA NEEDS FOR LOW-ACTIVATION FUSION MATERIALS DEVELOPMENT [J].
CIERJACKS, S .
FUSION ENGINEERING AND DESIGN, 1990, 13 (02) :229-238