Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening

被引:18
|
作者
Tanaka, Tomohisa [1 ]
Saito, Akatsuki [2 ,3 ]
Suzuki, Tatsuya [4 ]
Miyamoto, Yoichi [5 ]
Takayama, Kazuo [6 ]
Okamoto, Toru [4 ]
Moriishi, Kohji [1 ,7 ,8 ,9 ]
机构
[1] Univ Yamanashi, Fac Med, Grad Fac Interdisciplinary Res, Dept Microbiol, Chuo, Yamanashi 4093898, Japan
[2] Univ Miyazaki, Fac Agr, Dept Vet Sci, Miyazaki, Miyazaki 8892192, Japan
[3] Univ Miyazaki, Ctr Anim Dis Control, Miyazaki, Miyazaki 8892192, Japan
[4] Osaka Univ, Inst Adv Cocreat Studies, Res Inst Microbial Dis, Osaka, Osaka 5650871, Japan
[5] Natl Inst Biomed Innovat, Lab Nucl Transport Dynam, Hlth & Nutr NIBIOHN, Osaka, Osaka 5670085, Japan
[6] Kyoto Univ, Ctr iPS Cell Res & Applicat CiRA, Kyoto 6068507, Japan
[7] Univ Yamanashi, Ctr Life Sci Res, Yamanashi, Yamanashi 4093898, Japan
[8] Hokkaido Univ, Inst Genet Med, Div Hepatitis Virol, Sapporo, Hokkaido 0600808, Japan
[9] Univ Yamanashi, Fac Med, Grad Fac Interdisciplinary Res, Dept Microbiol, 1110 Shi-mokato, Chuo, Yamanashi 4093898, Japan
关键词
Antiviral; COVID-19; SARS-Coronavirus-2; Replicon; Stable cell line;
D O I
10.1016/j.antiviral.2022.105268
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phospho-transferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector pro-duced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-beta but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-beta. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Performance Characteristics of Four High-Throughput Immunoassays for Detection of IgG Antibodies against SARS-CoV-2
    Theel, Elitza S.
    Harring, Julie
    Hilgart, Heather
    Granger, Dane
    JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (08)
  • [42] Swab pooling enables rapid expansion of high-throughput capacity for SARS-CoV-2 community testing
    Fagg, Jamie
    Beale, Rupert
    Futschik, Matthias E.
    Turek, Elena
    Chapman, David
    Halstead, Susan
    Jones, Marc
    Cole-Hamilton, Joanna
    Gunson, Rory
    Sudhanva, Malur
    Klapper, Paul E.
    Vansteenhouse, Harper
    Tunkel, Sarah
    Dominiczak, Anna
    Peto, Timothy E. A.
    Fowler, Tom
    JOURNAL OF CLINICAL VIROLOGY, 2023, 167
  • [43] A rapid, high-throughput, and sensitive PEG-precipitation method for SARS-CoV-2 wastewater surveillance
    Zheng, Xiawan
    Wang, Mengying
    Deng, Yu
    Xu, Xiaoqing
    Lin, Danxi
    Zhang, Yulin
    Li, Shuxian
    Ding, Jiahui
    Shi, Xianghui
    Yau, Chung In
    Poon, Leo L. M.
    Zhang, Tong
    WATER RESEARCH, 2023, 230
  • [44] High-throughput detection of antibodies targeting the SARS-CoV-2 Spike in longitudinal convalescent plasma samples
    Anand, Sai Priya
    Prevost, Jeremie
    Richard, Jonathan
    Perreault, Josee
    Tremblay, Tony
    Drouin, Mathieu
    Fournier, Marie-Josee
    Lewin, Antoine
    Bazin, Renee
    Finzi, Andres
    TRANSFUSION, 2021, 61 (05) : 1377 - 1382
  • [45] A High-throughput Automated ELISA Assay for Detection of IgG Antibodies to the SARS-CoV-2 Spike Protein
    Conkright-Finchaml, Juliana
    Tomomori-Sato, Chieri
    McGhee, Rich
    Leslie, Ella M.
    Beucherl, Carolyn J.
    Weems, Lauren E.
    Sato, Shigeo
    Redwine, William B.
    Weaver, Kyle J.
    Miller, Brandon D.
    Delventhal, Kym M.
    Kary, John J.
    Koebbe, Andrew B.
    Deans, Alexander
    Witt, Jessica L.
    Remy, Laura M.
    Parmely, Tani J.
    Zhao, Chongbei
    Wang, Yan
    Conaway, Joan W.
    Unruh, Jay R.
    BIO-PROTOCOL, 2022, 12 (02):
  • [46] High throughput screening for drugs that inhibit 3C-like protease in SARS-CoV-2
    Smith, Emery
    Davis-Gardner, Meredith E.
    Garcia-Ordonez, Ruben D.
    Nguyen, Tu-Trinh
    Hull, Mitchell
    Chen, Emily
    Yu, Xuerong
    Bannister, Thomas D.
    Baillargeon, Pierre
    Scampavia, Louis
    Griffin, Patrick
    Farzan, Michael
    Spicer, Timothy P.
    SLAS DISCOVERY, 2023, 28 (03) : 95 - 101
  • [47] Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody
    Moscato, Giovanna
    Mazzetti, Paola
    Lucenteforte, Ersilia
    Rosellini, Alfredo
    Cara, Alice
    Quaranta, Paola
    Mainardi, Valerio
    Villa, Pietro
    Focosi, Daniele
    Lanza, Maria
    Bianco, Irene
    Mazzoni, Alessandro
    Falcone, Marco
    Menichetti, Francesco
    Maggi, Fabrizio
    Lai, Michele
    Freer, Giulia
    Pistello, Mauro
    JOURNAL OF CLINICAL VIROLOGY PLUS, 2021, 1 (1-2):
  • [48] Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
    Altincekic, Nadide
    Korn, Sophie Marianne
    Qureshi, Nusrat Shahin
    Dujardin, Marie
    Ninot-Pedrosa, Marti
    Abele, Rupert
    Saad, Marie Jose Abi
    Alfano, Caterina
    Almeida, Fabio C. L.
    Alshamleh, Islam
    de Amorim, Gisele Cardoso
    Anderson, Thomas K.
    Anobom, Cristiane D.
    Anorma, Chelsea
    Bains, Jasleen Kaur
    Bax, Adriaan
    Blackledge, Martin
    Blechar, Julius
    Bockmann, Anja
    Brigandat, Louis
    Bula, Anna
    Buetikofer, Matthias
    Camacho-Zarco, Aldo R.
    Carlomagno, Teresa
    Caruso, Icaro Putinhon
    Ceylan, Betul
    Chaikuad, Apirat
    Chu, Feixia
    Cole, Laura
    Crosby, Marquise G.
    de Jesus, Vanessa
    Dhamotharan, Karthikeyan
    Felli, Isabella C.
    Ferner, Jan
    Fleischmann, Yanick
    Fogeron, Marie-Laure
    Fourkiotis, Nikolaos K.
    Fuks, Christin
    Fuertig, Boris
    Gallo, Angelo
    Gande, Santosh L.
    Gerez, Juan Atilio
    Ghosh, Dhiman
    Gomes-Neto, Francisco
    Gorbatyuk, Oksana
    Guseva, Serafima
    Hacker, Carolin
    Haefner, Sabine
    Hao, Bing
    Hargittay, Bruno
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [49] Development of a high-throughput SARS-CoV-2 antibody testing pathway using dried blood spot specimens
    Moat, Stuart J.
    Zelek, Wioleta M.
    Carne, Emily
    Ponsford, Mark J.
    Bramhall, Kathryn
    Jones, Sara
    El-Shanawany, Tariq
    Wise, Matt P.
    Thomas, Annette
    George, Chloe
    Fegan, Christopher
    Steven, Rachael
    Webb, Russell
    Weeks, Ian
    Morgan, B. Paul
    Jolles, Stephen
    ANNALS OF CLINICAL BIOCHEMISTRY, 2021, 58 (02) : 123 - 131
  • [50] A Dried Blood Spot protocol for high-throughput quantitative analysis of SARS-CoV-2 RBD serology based on the Roche Elecsys system
    Castelletti, Noemi
    Paunovic, Ivana
    Rubio-Acero, Raquel
    Beyerl, Jessica
    Plank, Michael
    Reinkemeyer, Christina
    Kroidl, Inge
    Norena, Ivan
    Winter, Simon
    Olbrich, Laura
    Janke, Christian
    Hoelscher, Michael
    Wieser, Andreas
    MICROBIOLOGY SPECTRUM, 2024, 12 (04):