Thin film growth effects on electrical conductivity in entropy stabilized oxides

被引:18
作者
Jacobson, V [1 ,2 ]
Diercks, D. [2 ]
To, B. [1 ]
Zakutayev, A. [1 ]
Brennecka, G. [2 ]
机构
[1] Natl Renewable Energy Lab, 16000 Denver West Pkwy, Golden, CO USA
[2] Colorado Sch Mines, 1500 Illinois Ave, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
Entropy; Oxide; Phase; Electrical Conductivity; Thin film;
D O I
10.1016/j.jeurceramsoc.2020.12.021
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Entropy stabilization has garnered significant attention as a new approach to designing novel materials. Much of the work in this area has focused on bulk ceramic processing, leaving entropy-stabilized thin films relatively under-explored. Following an extensive multi-variable investigation of polycrystalline (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O thin films deposited via pulsed laser deposition (PLD), it is shown here that substrate temperature and deposition pressure have strong and repeatable effects on film texture and lattice parameter. Further analysis shows that films deposited at lower temperatures and under lower oxygen chamber pressure are similar to 40x less electrically resistive than otherwise identical films grown at higher temperature and pressure. Annealing these films in an oxygen-rich environment increases their electrical resistivity to match that of the films grown at higher temperatures and pressures. Because of this, the electric conductivity is hypothesized to be the result of polaron hopping mediated by transition metal valence changes which compensate for oxygen off-stoichiometry.
引用
收藏
页码:2617 / 2624
页数:8
相关论文
共 50 条
[21]   Effect of band gap energy on the electrical conductivity in doped ZnO thin film [J].
Said Benramache ;
Okba Belahssen ;
Hachemi Ben Temam .
Journal of Semiconductors, 2014, (07) :23-26
[22]   Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides [J].
Zhang, Fengnian ;
Cheng, Fuhao ;
Cheng, Chufei ;
Guo, Meng ;
Liu, Yufeng ;
Miao, Yang ;
Gao, Feng ;
Wang, Xiaomin .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 105 :122-130
[23]   Electrical conductivity of manganese doped yttria (8 mol%) stabilized zirconia [J].
Mahapatra, Manoj K. ;
Li, Na ;
Verma, Atul ;
Singh, Prabhakar .
SOLID STATE IONICS, 2013, 253 :223-226
[24]   Tetrathiotetracene thin film morphology and electrical properties [J].
Pudzs, K. ;
Vembris, A. ;
Busenbergs, J. ;
Rutkis, M. ;
Woodward, S. .
THIN SOLID FILMS, 2016, 598 :214-218
[25]   Laser processing of indium tin oxide thin film to enhance electrical conductivity and flexibility [J].
Park, Taesoon ;
Ha, Jeonghong ;
Kim, Dongsik .
THIN SOLID FILMS, 2018, 658 :38-45
[26]   Improvement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Film [J].
Yu, Seong Hun ;
Lee, Jae Hak ;
Choi, Myong Soo ;
Park, Jong Hyeok ;
Yoo, Pil J. ;
Lee, Jun Young .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2013, 580 (01) :76-82
[27]   Chemical and structural effects on ionic conductivity at columnar grain boundaries in yttria-stabilized zirconia thin films [J].
Kiguchi, Takanori ;
Kodama, Yumiko ;
Konno, Toyohiko J. ;
Funakubo, Hiroshi ;
Sakurai, Osamu ;
Shinozaki, Kazuo .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2014, 122 (1426) :430-435
[28]   Microstructural effects on electrical conductivity relaxation in nanoscale ceria thin films [J].
Tsuchiya, Masaru ;
Bojarczuk, Nestor A. ;
Guha, Supratik ;
Ramanathan, Shriram .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (17)
[29]   Electrical and optical characterization of multilayered thin film based on pulsed laser deposition of metal oxides [J].
Marotta, V ;
Orlando, S ;
Parisi, GP ;
Giardini, A ;
Perna, G ;
Santoro, AM ;
Capozzi, V .
APPLIED SURFACE SCIENCE, 2000, 168 (1-4) :141-145
[30]   Quantifying the influence of graphene film nanostructure on the macroscopic electrical conductivity [J].
Rizzi, Leo ;
Wijaya, Amaliya F. ;
Palanisamy, Logeshwaran Vellingirisamy ;
Schuster, Joerg ;
Koehne, Martin ;
Schulz, Stefan E. .
NANO EXPRESS, 2020, 1 (02)