Highly Ordered Ultrathin Perfluorinated Sulfonic Acid Ionomer Membranes for Vanadium Redox Flow Battery

被引:58
|
作者
Kim, Jongmin Q. [1 ,2 ]
So, Soonyong [3 ]
Kim, Hee-Tak [1 ,2 ]
Choi, Siyoung Q. [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Adv Battery Ctr, KAIST Inst NanoCentury, Daejeon 34141, South Korea
[3] Korea Res Inst Chem Technol KRICT, Energy Mat Res Ctr, Daejeon 34114, South Korea
基金
新加坡国家研究基金会;
关键词
NAFION; TRANSPORT; MORPHOLOGY; ION; MECHANISMS; MONOLAYERS; SCATTERING;
D O I
10.1021/acsenergylett.0c02089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In vanadium redox flow batteries (VRFBs), a perfluorinated sulfonic acid (PFSA) ionomer membrane plays a crucial role in transporting ions through hydrophilic channels. However, its randomly interconnected channels with relatively large size in a hydrated state cause low proton/vanadium ion selectivity, imposing a limitation in enhancing performance of VRFB. Herein, we develop an ultrathin PFSA membrane of highly aligned ion channels with reduced size, by molecular arrangement on the air/water interface. Well-ordered ion channels dramatically suppress the vanadium ion crossover, enhancing 500-fold in the ion selectivity compared to conventional PFSA membranes. The molecularly controlled ultrathin PFSA membranes exhibit stable cell performance on a porous support over various current densities and long-term cycles (800 cycles), exceeding the energy efficiency of Nafion 211 (73%) at 200 mA/cm(2). Highly ordered ultrathin PFSA membranes with high ion selectivity could offer a practically applicable low-cost, yet high-performance membrane for VRFBs.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [21] Ion exchange membranes for vanadium redox flow battery (VRB) applications
    Li, Xianfeng
    Zhang, Huamin
    Mai, Zhensheng
    Zhang, Hongzhang
    Vankelecom, Ivo
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) : 1147 - 1160
  • [22] A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery
    Nikiforidis, Georgios
    Belhcen, Amal
    Anouti, Meriem
    JOURNAL OF ENERGY CHEMISTRY, 2021, 57 : 238 - 246
  • [23] A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery
    Georgios Nikiforidis
    Amal Belhcen
    Mérièm Anouti
    Journal of Energy Chemistry , 2021, (06) : 238 - 246
  • [24] Highly Economical and Efficient Polyethylene Separator for Vanadium Redox Flow Battery
    Dalal, Utsav
    Verma, Anil
    ENERGY & FUELS, 2024, 38 (13) : 12182 - 12191
  • [25] A novel anion exchange membranes with fluorinated poly(aryl ether oxadiazole)s ionomer for all-vanadium redox flow battery
    Xu M.
    Shang Y.
    Xie X.
    Lü Y.
    Huagong Xuebao/CIESC Journal, 2011, 62 (SUPPL. 2): : 150 - 154
  • [26] Porous Membranes of Polysulfone and Graphene Oxide Nanohybrids for Vanadium Redox Flow Battery
    Lin, Chien-Hong
    Chien, Ming-Yen
    Chuang, Yi-Cih
    Lai, Chao-Chi
    Sun, Yi-Ming
    Liu, Ting-Yu
    POLYMERS, 2022, 14 (24)
  • [27] Preparation of Polybenzimidazole/Polyvinylpyrrolidone Proton Exchange Membranes for Vanadium Redox Flow Battery
    Song Xipeng
    Liu Jinyu
    Wang Lihua
    Han Xutong
    Huang Qinglin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2019, 40 (07): : 1543 - 1551
  • [28] Modification of anion-exchange membranes for vanadium redox flow battery applications
    Mohammadi, T
    Skyllas-Kazacos, M
    JOURNAL OF POWER SOURCES, 1996, 63 (02) : 179 - 186
  • [29] Urushi/Nafion Hybrid Membranes for an All-Vanadium Redox Flow Battery
    Jung, Jiyoon
    Cho, Eun Hae
    Hwang, Seung Sang
    Won, Jongok
    CHEMISTRYSELECT, 2018, 3 (21): : 5769 - 5777
  • [30] Vibrational and thermal characterization of H2O2 pretreatment effects with perfluorinated sulfonic acid ionomer membranes
    Grava, Wilson M.
    Okada, Tatsuhiro
    Kawano, Yoshio
    ELECTROCHEMISTRY, 2006, 74 (06) : 467 - 473