3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance

被引:43
作者
Ferris, AnalS [1 ,2 ]
Bourrier, David [1 ]
Garbarino, Sebastien [2 ,3 ]
Guay, Daniel [2 ]
Pech, David [1 ]
机构
[1] Univ Toulouse, LAAS CNRS, F-31400 Toulouse, France
[2] INRS Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] PRIMA Quebec, 505 Blvd Maisonneuve Ouest, Montreal, PQ H3A 3C2, Canada
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
3D; interdigitated; microfabrication; microsupercapacitors; pseudocapacitance; ENERGY-DENSITY; MICRO-SUPERCAPACITORS; ELECTRODES; OXIDE; FILMS;
D O I
10.1002/smll.201901224
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to their high-power density and long lifetime, microsupercapacitors have been considered as an efficient energy supply/storage solution for the operation of small electronic devices. However, their fabrication remains confined to 2D thin-film microdevices with limited areal energy. In this study, the integration of all-solid-state 3D interdigitated microsupercapacitors on 4 in. silicon wafers with record energy density is demonstrated. The device electrodes are composed of a pseudocapacitive hydrated ruthenium dioxide RuO2 deposited onto highly porous current collectors. The encapsulated devices exhibit cell capacitance of 812 mF cm(-2) per footprint area at an energy density of 329 mJ cm(-2), which is the highest value ever reported for planar configuration. These components achieve one of the highest surface energy/power density trade-offs and address the issue of electrical energy storage of modern electronics.
引用
收藏
页数:8
相关论文
共 54 条
[21]   High Areal Energy Density 3D Lithium-Ion Microbatteries [J].
Hur, Janet I. ;
Smith, Leland C. ;
Dunn, Bruce .
JOULE, 2018, 2 (06) :1187-1201
[22]   Hydrogen electrocatalysis [J].
Kibler, Ludwig A. .
CHEMPHYSCHEM, 2006, 7 (05) :985-991
[23]  
Kyeremateng NA, 2017, NAT NANOTECHNOL, V12, P7, DOI [10.1038/NNANO.2016.196, 10.1038/nnano.2016.196]
[24]   Attainable Energy Density of Microbatteries [J].
Kyeremateng, Neil A. ;
Hahn, Robert .
ACS ENERGY LETTERS, 2018, 3 (05) :1172-1175
[25]   Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J].
Lang, Xingyou ;
Hirata, Akihiko ;
Fujita, Takeshi ;
Chen, Mingwei .
NATURE NANOTECHNOLOGY, 2011, 6 (04) :232-236
[26]   Challenges and prospects of 3D micro-supercapacitors for powering the internet of things [J].
Lethien, Christophe ;
Le Bideau, Jean ;
Brousse, Thierry .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) :96-115
[27]   An ultrafast rechargeable aluminium-ion battery [J].
Lin, Meng-Chang ;
Gong, Ming ;
Lu, Bingan ;
Wu, Yingpeng ;
Wang, Di-Yan ;
Guan, Mingyun ;
Angell, Michael ;
Chen, Changxin ;
Yang, Jiang ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NATURE, 2015, 520 (7547) :325-+
[28]   Advances on Microsized On-Chip Lithium-Ion Batteries [J].
Liu, Lixiang ;
Weng, Qunhong ;
Lu, Xueyi ;
Sun, Xiaolei ;
Zhang, Lin ;
Schmidt, Oliver G. .
SMALL, 2017, 13 (45)
[29]   Review on Nanoarchitectured Current Collectors for Pseudocapacitors [J].
Liu, Long ;
Zhao, Huaping ;
Lei, Yong .
SMALL METHODS, 2019, 3 (08)
[30]   Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture [J].
Liu, Nishuang ;
Gao, Yihua .
SMALL, 2017, 13 (45)