Implementation of Sparse Superposition Codes

被引:3
作者
Condo, Carlo [1 ,2 ,3 ,4 ,5 ]
Gross, Warren J. [1 ,6 ,7 ,8 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
[2] Politecn Torino, Elect & Comp Engn, Turin, Italy
[3] Univ Illinois, Chicago, IL USA
[4] Politec Torino & Telecom Bretagne, Elect & Telecommunicat Engn, Plouzane, France
[5] McGill Univ, ISIP Lab, Montreal, PQ, Canada
[6] Univ Waterloo, Elect Engn, Waterloo, ON, Canada
[7] Univ Toronto, Toronto, ON, Canada
[8] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
关键词
Sparse superposition codes; compressed sensing; approximate message passing; encoder; decoder;
D O I
10.1109/TSP.2017.2664045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse superposition codes (SSCs) are capacity achieving codes whose decoding process is a linear sensing problem. Decoding approaches thus exploit the approximate message passing algorithm, which has been proven to be effective in compressing sensing. Previous work from the authors has evaluated the error correction performance of SSCs under finite precision and finite code length. This paper proposes the first SSC encoder and decoder architectures in the literature. The architectures are parametrized and applicable to all SSCs: A set of wide-ranging case studies is then considered, and code-specific approximations, along with implementation results in 65 nmCMOS technology, are then provided. The encoding process can be carried out with low power consumption (<= 2.103 mW), while the semi-parallel decoder architecture can reach a throughput of 1.3 Gb/s with a 768 x 6-bit SSC codeword and an area occupation of 2.43 mm(2).
引用
收藏
页码:2421 / 2427
页数:7
相关论文
共 18 条
[1]  
[Anonymous], APPROXIMATE MESSAGE
[2]  
Barac Filip, 2013, 2013 IEEE International Workshop on Measurements & Networking (M&N), P46, DOI 10.1109/IWMN.2013.6663775
[3]   Scrutinizing Bit- and Symbol-Errors of IEEE 802.15.4 Communication in Industrial Environments [J].
Barac, Filip ;
Gidlund, Mikael ;
Zhang, Tingting .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (07) :1783-1794
[4]  
Baraniuk RG, 2008, IEEE SIGNAL PROC MAG, V25, P12, DOI 10.1109/MSP.2008.915557
[5]  
Barbier J, 2016, IEEE INT SYMP INFO, P1173, DOI 10.1109/ISIT.2016.7541484
[6]  
Barbier J, 2014, IEEE INT SYMP INFO, P1494, DOI 10.1109/ISIT.2014.6875082
[7]  
Barron AR, 2012, IEEE INT SYMP INFO, P120, DOI 10.1109/ISIT.2012.6283048
[8]   Toward Fast Reliable Communication at Rates Near Capacity with Gaussian Noise [J].
Barron, Andrew R. ;
Joseph, Antony .
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, :315-319
[9]   Pseudo-random Gaussian distribution through optimised LFSR permutations [J].
Condo, C. ;
Gross, W. J. .
ELECTRONICS LETTERS, 2015, 51 (25) :2099-2100
[10]  
Condo C., 2015, 2015 IEEE Workshop on Signal Processing Systems (SiPS), P1