Stability of in-plane delocalized vibrational modes in triangular Morse lattice

被引:3
作者
Abdullina, D. U. [1 ,2 ]
Semenova, M. N. [3 ]
Semenov, A. S. [3 ]
Ryabov, D. S. [4 ]
Chechin, G. M. [4 ]
Korznikova, E. A. [1 ]
Baimova, J. A. [1 ,2 ]
Dmitriev, S. V. [1 ,5 ]
机构
[1] Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[2] Bashkir State Univ, 32 Validy St, Ufa 450076, Russia
[3] North Eastern Fed Univ, Polytech Inst Branch Mirny, 5-1 Tikhonova St, Sakha 678170, Yakutia, Russia
[4] Southern Fed Univ, 105 Bolshaya Sadovaya St, Rostov Na Donu, Russia
[5] Natl Res Tomsk State Univ, 36 Lenin Ave, Tomsk 634050, Russia
来源
OPEN SCHOOL-CONFERENCE OF NIS COUNTRIES ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS | 2018年 / 447卷
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
GAP DISCRETE BREATHERS;
D O I
10.1088/1757-899X/447/1/012060
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Delocalized nonlinear vibrational modes (DNVMs) play a very important role in the study of the dynamics of a nonlinear lattice in solid state physics. Such modes are exact solutions to the equations of motion of atoms dictated by the lattice space symmetry. If the amplitude of DNVM is above the threshold value, it is modulationally unstable. In the present study, we consider the stability of DNVMs in a two-dimensional (2D) triangular lattice with atoms interacting via the Morse potential. Critical exponents are calculated numerically as functions of the DNVM amplitude. Extrapolation to the zero value of the critical exponent gives an estimation of the DNVM amplitude, below which it is stable.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Bachurina OV, 2017, MATER PHYS MECH, V33, P49, DOI 10.18720/MPM.3312017_6
[2]  
Baimova JA, 2015, REV ADV MATER SCI, V42, P68
[3]   Gap discrete breathers in strained boron nitride [J].
Barani, Elham ;
Korznikova, Elena A. ;
Chetverikov, Alexander P. ;
Zhou, Kun ;
Dmitriev, Sergey V. .
PHYSICS LETTERS A, 2017, 381 (41) :3553-3557
[4]   Transverse discrete breathers in unstrained graphene [J].
Barani, Elham ;
Lobzenko, Ivan P. ;
Korznikova, Elena A. ;
Soboleva, Elvira G. ;
Dmitriev, Sergey V. ;
Zhou, Kun ;
Marjaneh, Aliakbar Moradi .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (03)
[5]  
BURLAKOV VM, 1990, JETP LETT+, V51, P544
[6]   Properties of discrete breathers in graphane from ab initio simulations [J].
Chechin, G. M. ;
Dmitriev, S. V. ;
Lobzenko, I. P. ;
Ryabov, D. S. .
PHYSICAL REVIEW B, 2014, 90 (04)
[7]   Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results [J].
Chechin, GM ;
Sakhnenko, VP .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 117 (1-4) :43-76
[8]   Localization and equipartition of energy in the β-FPU chain:: Chaotic breathers [J].
Cretegny, T ;
Dauxois, T ;
Ruffo, S ;
Torcini, A .
PHYSICA D, 1998, 121 (1-2) :109-126
[9]   Auxeticity from nonlinear vibrational modes [J].
Dmitriev, S. V. ;
Korznikova, E. A. ;
Bokij, D. I. ;
Zhou, K. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (07) :1310-1317
[10]   Discrete breathers in crystals [J].
Dmitriev, S. V. ;
Korznikova, E. A. ;
Baimova, Yu A. ;
Velarde, M. G. .
PHYSICS-USPEKHI, 2016, 59 (05) :446-461