A Computational Study on Performance Improvement of THz Signal from a Grating Photoconductive Antenna

被引:1
作者
Chia, Jia Yi [1 ]
Tantiwanichapan, Khwanchai [1 ]
Jintamethasawat, Rungroj [1 ]
Sathukarn, Asmar [1 ]
Kusolthossakul, Woraprach [1 ]
Nuntawong, Noppadon [1 ]
机构
[1] Natl Elect & Comp Technol Ctr NECTEC, 112 Thailand Sci Pk,Phahonyothin Rd, Khlong Luang 12120, Pathum Thani, Thailand
关键词
diffractive grating; anti-reflection; THz time domain spectroscopy; photoconductive antenna; TERAHERTZ; REFLECTIVITY; EMITTERS;
D O I
10.3390/photonics7040108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A diffractive grating is a well-known optical component and is extensively used in many applications. This research work explores application of the diffractive grating in a photoconductive antenna (PCA) of a terahertz time domain spectroscopy (THz-TDS) system, by utilizing benefits of a sub-wavelength grating structure. The grating PCA structure was modeled and simulated by COMSOL Multiphysics software (COMSOL, Inc., Burlington, MA, USA). Performance of the proposed PCA design is studied in terms of its induced photocurrent. The effects of geometrical parameters of the grating are also investigated and analyzed through its optical and electrical responses. Thanks to the increase in absorption of the incident laser's electric field, the simulation results show a 63% increment of the induced photocurrent in the grating PCA, compared with the conventional planar PCA.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 35 条
[1]   Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods [J].
Bashirpour, Mohammad ;
Forouzmehr, Matin ;
Hosseininejad, Seyed Ehsan ;
Kolahdouz, Mohammadreza ;
Neshat, Mohammad .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes [J].
Berry, C. W. ;
Wang, N. ;
Hashemi, M. R. ;
Unlu, M. ;
Jarrahi, M. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas [J].
Berry, Christopher W. ;
Hashemi, Mohammad R. ;
Jarrahi, Mona .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[4]   Terahertz generation using plasmonic photoconductive gratings [J].
Berry, Christopher W. ;
Jarrahi, Mona .
NEW JOURNAL OF PHYSICS, 2012, 14
[5]   ErAs:GaAs photomixer with two-decade tunability and 12 μW peak output power [J].
Bjarnason, JE ;
Chan, TLJ ;
Lee, AWM ;
Brown, ER ;
Driscoll, DC ;
Hanson, M ;
Gossard, AC ;
Muller, RE .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :3983-3985
[6]   Plasmonic Nanodisk Thin-Film Terahertz Photoconductive Antenna [J].
Burford, Nathan M. ;
Evans, Michael J. ;
El-Shenawee, Magda O. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2018, 8 (02) :237-247
[7]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[8]   An anti-reflective 1D rectangle grating on GaAs solar cell using one-step femtosecond laser fabrication [J].
Chen, Ruifang ;
Hu, Zhihui ;
Ye, Yunxia ;
Zhang, Junsong ;
Shi, Zhiguo ;
Hua, Yinqun .
OPTICS AND LASERS IN ENGINEERING, 2017, 93 :109-113
[9]  
Dexheimer S.L., 2017, TERAHERTZ SPECTROSCO
[10]   Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas [J].
Duvillaret, L ;
Garet, F ;
Roux, JF ;
Coutaz, JL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2001, 7 (04) :615-623