Functional data analysis: estimation of the relative error in functional regression under random left-truncation model

被引:18
|
作者
Altendji, Belkais [1 ]
Demongeot, Jacques [2 ]
Laksaci, Ali [3 ]
Rachdi, Mustapha [4 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes, Algeria
[2] Univ Grenoble Alpes, Fac Med Grenoble, Lab AGEIS, Equipe AGIM,EA 7407, La Tronche, France
[3] King Khalid Univ, Dept Math, Coll Sci, Abha, Saudi Arabia
[4] Univ Grenoble Alpes, Equipe AGIM, Lab AGEIS, UFR,SHS,EA 7407, BP 47, F-38040 Grenoble 09, France
关键词
Functional data analysis (FDA); censored data; truncated data; small ball probability; functional regression; relative error; LOCAL LINEAR-REGRESSION; NONPARAMETRIC REGRESSION; ASYMPTOTIC PROPERTIES; CONDITIONAL QUANTILE; UNIFORM CONSISTENCY; BOOTSTRAP; PREDICTION; SELECTION;
D O I
10.1080/10485252.2018.1438609
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
引用
收藏
页码:472 / 490
页数:19
相关论文
共 50 条
  • [21] Randomly censored quantile regression estimation using functional stationary ergodic data
    Chaouch, Mohamed
    Khardani, Salah
    JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (01) : 65 - 87
  • [22] Nonparametric relative regression under random censorship model
    Salah, Khardani
    Yousri, Slaoui
    STATISTICS & PROBABILITY LETTERS, 2019, 151 : 116 - 122
  • [23] KERNEL CONDITIONAL QUANTILE ESTIMATOR UNDER LEFT TRUNCATION FOR FUNCTIONAL REGRESSORS
    Helal, Nacera
    Said, Elias Ould
    OPUSCULA MATHEMATICA, 2016, 36 (01) : 25 - 48
  • [24] Least absolute relative error estimation for functional quadratic multiplicative model
    Zhang, Tao
    Zhang, Qingzhao
    Li, Naixiong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (19) : 5802 - 5817
  • [25] Theknearest neighbors smoothing of the relative-error regression with functional regressor
    Almanjahie, Ibrahim M.
    Aissiri, Khlood A.
    Laksaci, Ali
    Chikr Elmezouar, Zouaoui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (12) : 4196 - 4209
  • [26] On semiparametric regression in functional data analysis
    Ling, Nengxiang
    Vieu, Philippe
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (06):
  • [27] Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density
    Shang, Han Lin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 67 : 185 - 198
  • [28] STRONG UNIFORM CONSISTENCY RATES OF CONDITIONAL DENSITY ESTIMATION IN THE SINGLE FUNCTIONAL INDEX MODEL FOR FUNCTIONAL DATA UNDER RANDOM CENSORSHIP
    Kadiri, Nadia
    Meghnafi, Mustapha
    Rabhi, Abbes
    REVSTAT-STATISTICAL JOURNAL, 2022, 20 (02) : 221 - 249
  • [29] Statistical regression analysis of functional and shape data
    Guo, Mengmeng
    Su, Jingyong
    Sun, Li
    Cao, Guofeng
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (01) : 28 - 44
  • [30] Nonparametric relative error estimation of the regression function for left truncated and right censored time series data
    Bayarassou, N.
    Hamrani, F.
    Said, E. Ould
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (03) : 706 - 729