Long non-coding RNA: Classification, biogenesis and functions in blood cells

被引:318
作者
Dahariya, Swati [1 ]
Paddibhatla, Indira [1 ]
Kumar, Santosh [1 ]
Raghuwanshi, Sanjeev [1 ]
Pallepati, Adithya [1 ]
Gutti, Ravi Kumar [1 ]
机构
[1] Univ Hyderabad, Sch Life Sci, Dept Biochem, PO Gachibowli, Hyderabad 500046, Telangana, India
关键词
Long non-coding RNA; Non-coding RNA; Platelet; Megakaryocyte; COMPETING ENDOGENOUS RNA; LNCRNA MALAT1 FUNCTIONS; EPIGENETIC REGULATION; GENE-EXPRESSION; GENOME REGULATION; CARDIAC FIBROSIS; DNA METHYLATION; ROLES; SEQ; IDENTIFICATION;
D O I
10.1016/j.molimm.2019.04.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While there exist some long non-coding RNAs (lncRNAs) that are structurally similar to mRNAs (capped, spliced, poly a tail), not all of the lncRNAs exhibit these features. Structurally, lncRNAs are classified under the regulatory non-coding RNAs category these IncRNA molecules operate as signals, decoys, guides, and scaffolds. In eukaryotes, lncRNAs are transcribed by RNA Polymerase II and RNA Polymerase III at several loci of the genome. Unlike other protein-coding mRNAs, lncRNAs exhibit functional uniqueness by participating in and modulating the various cellular processes such as, histone modification, DNA methylation, and cellular transcription (Wei et al., 2017). LncRNA alters chromatin structure and DNA accessibility, thereby regulating patterns of gene expression (Wang et al., 2011b). Disordered IncRNA with quantitative or qualitative alterations lead to the progression of numerous diseases including blood associated diseases. LncRNAs not only regulate lineage commitment such as cardiovascular lineage but also contribute for the hematopoietic stem cell development with a significant role in myeloid and lymphoid lineage commitment. However, the key molecular functions of IncRNAs in hematopoiesis are still unclear, particularly, their functional role during megakaryocyte development from hematopoietic stem cells (HSCs) is largely unexplored. This review summarizes the current status of knowledge on IncRNAs classification, biogenesis and its role in blood cells.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 168 条
[41]   Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis [J].
Giroud, Maude ;
Scheideler, Marcel .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (12)
[42]   The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease [J].
Gomes, Clarissa P. C. ;
Spencer, Helen ;
Ford, Kerrie L. ;
Michel, Lauriane Y. M. ;
Baker, Andrew H. ;
Emanueli, Costanza ;
Balligand, Jean-Luc ;
Devaux, Yvan .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 8 :494-507
[43]   The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis [J].
Grote, Phillip ;
Herrmann, Bernhard G. .
RNA BIOLOGY, 2013, 10 (10) :1579-1585
[44]   The Tissue-Specific IncRNA Fendrr Is an Essential Regulator of Heart and Body Wall Development in the Mouse [J].
Grote, Phillip ;
Wittler, Lars ;
Hendrix, David ;
Koch, Frederic ;
Waehrisch, Sandra ;
Beisaw, Arica ;
Macura, Karol ;
Blaess, Gaby ;
Kellis, Manolis ;
Werber, Martin ;
Herrmann, Bernhard G. .
DEVELOPMENTAL CELL, 2013, 24 (02) :206-214
[45]   Advances in long noncoding RNAs: identification, structure prediction and function annotation [J].
Guo, Xingli ;
Gao, Lin ;
Wang, Yu ;
Chiu, David K. Y. ;
Wang, Tong ;
Deng, Yue .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2016, 15 (01) :38-46
[46]   lincRNAs act in the circuitry controlling pluripotency and differentiation [J].
Guttman, Mitchell ;
Donaghey, Julie ;
Carey, Bryce W. ;
Garber, Manuel ;
Grenier, Jennifer K. ;
Munson, Glen ;
Young, Geneva ;
Lucas, Anne Bergstrom ;
Ach, Robert ;
Bruhn, Laurakay ;
Yang, Xiaoping ;
Amit, Ido ;
Meissner, Alexander ;
Regev, Aviv ;
Rinn, John L. ;
Root, David E. ;
Lander, Eric S. .
NATURE, 2011, 477 (7364) :295-U60
[47]   Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? [J].
Hanly, David J. ;
Esteller, Manel ;
Berdasco, Maria .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 373 (1748)
[48]   GENCODE: The reference human genome annotation for The ENCODE Project [J].
Harrow, Jennifer ;
Frankish, Adam ;
Gonzalez, Jose M. ;
Tapanari, Electra ;
Diekhans, Mark ;
Kokocinski, Felix ;
Aken, Bronwen L. ;
Barrell, Daniel ;
Zadissa, Amonida ;
Searle, Stephen ;
Barnes, If ;
Bignell, Alexandra ;
Boychenko, Veronika ;
Hunt, Toby ;
Kay, Mike ;
Mukherjee, Gaurab ;
Rajan, Jeena ;
Despacio-Reyes, Gloria ;
Saunders, Gary ;
Steward, Charles ;
Harte, Rachel ;
Lin, Michael ;
Howald, Cedric ;
Tanzer, Andrea ;
Derrien, Thomas ;
Chrast, Jacqueline ;
Walters, Nathalie ;
Balasubramanian, Suganthi ;
Pei, Baikang ;
Tress, Michael ;
Manuel Rodriguez, Jose ;
Ezkurdia, Iakes ;
van Baren, Jeltje ;
Brent, Michael ;
Haussler, David ;
Kellis, Manolis ;
Valencia, Alfonso ;
Reymond, Alexandre ;
Gerstein, Mark ;
Guigo, Roderic ;
Hubbard, Tim J. .
GENOME RESEARCH, 2012, 22 (09) :1760-1774
[49]   High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells [J].
He, Chongsheng ;
Sidoli, Simone ;
Warneford-Thomson, Robert ;
Tatomer, Deirdre C. ;
Wilusz, Jeremy E. ;
Garcia, Benjamin A. ;
Bonasio, Roberto .
MOLECULAR CELL, 2016, 64 (02) :416-430
[50]   Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites [J].
Hemberg, Martin ;
Gray, Jesse M. ;
Cloonan, Nicole ;
Kuersten, Scott ;
Grimmond, Sean ;
Greenberg, Michael E. ;
Kreiman, Gabriel .
NUCLEIC ACIDS RESEARCH, 2012, 40 (16) :7858-7869