Round-Robin Differential-Phase-Shift Quantum Key Distribution in Wavelength-Multiplexed Fiber Channel

被引:0
作者
Li, Bingpeng [1 ]
机构
[1] Naijing Polit Coll, Shanghai Branch, Shanghai 200433, Peoples R China
来源
INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONICS ENGINEERING (ICOPEN 2016) | 2017年 / 10250卷
基金
中国国家自然科学基金;
关键词
quantum key distribution; round-robin differential-phase-shift; wavelength-multiplexed; SECURITY; SYSTEM; PLUG;
D O I
10.1117/12.2267279
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Realizing long-distance quantum key distribution (QKD) in fiber channel where classical optical communications and quantum signals are multiplexed by their different wavelengths has attracted considerable attentions. The achievable secure distance of commonly-used Bennet-Brassard 1984 (BB84) protocol is lowered severely due to inevitable crosstalk from classical optical pulses. Unlike conventional quantum key distribution (QKD) protocols, round-robin differential-phase-shift (RRDPS) QKD protocol has a high tolerance for noise, since the potential information leakage in this protocol can be bounded without monitoring signal disturbance. Thus, it may be a promising protocol under noisy channel. In this work, we investigate the performance, e.g., achievable secure distance of RRPDS protocol, when crosstalk from classical communication is considered. Surprisingly, we find that RRPDS only has quite limited advantage over BB84 protocol when optical misalignment of QKD system is serious. If misalignment is trivial, BB84 can even outperform RRDPS protocol.
引用
收藏
页数:5
相关论文
共 32 条
  • [1] [Anonymous], ARXIV E PRINTS
  • [2] [Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Quantum cryptographic network based on quantum memories
    Biham, E
    Huttner, B
    Mor, T
    [J]. PHYSICAL REVIEW A, 1996, 54 (04): : 2651 - 2658
  • [4] Experiments on long wavelength (1550nm) "plug and play" quantum cryptography systems
    Bourennane, M
    Gibson, F
    Karlsson, A
    Hening, A
    Jonsson, P
    Tsegaye, T
    Ljunggren, D
    Sundberg, E
    [J]. OPTICS EXPRESS, 1999, 4 (10): : 383 - 387
  • [5] Side-Channel-Free Quantum Key Distribution
    Braunstein, Samuel L.
    Pirandola, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [6] A quantum access network
    Froehlich, Bernd
    Dynes, James F.
    Lucamarini, Marco
    Sharpe, Andrew W.
    Yuan, Zhiliang
    Shields, Andrew J.
    [J]. NATURE, 2013, 501 (7465) : 69 - +
  • [7] Quantum key distribution over 122 km of standard telecom fiber
    Gobby, C
    Yuan, ZL
    Shields, AJ
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (19) : 3762 - 3764
  • [8] Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution
    Guan, Jian-Yu
    Cao, Zhu
    Liu, Yang
    Shen-Tu, Guo-Liang
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Ma, Xiongfeng
    Zhang, Qiang
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (18)
  • [9] Security of practical time-reversed EPR quantum key distribution
    Inamori, H
    [J]. ALGORITHMICA, 2002, 34 (04) : 340 - 365
  • [10] Single-photon interference experiment over 100km for quantum cryptography system using balanced gated-mode photon detector
    Kosaka, H
    Tomita, A
    Nambu, Y
    Kimura, T
    Nakamura, K
    [J]. ELECTRONICS LETTERS, 2003, 39 (16) : 1199 - 1201