Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal-Support Interaction: A Case Study on Oxygen Evolution Reaction

被引:81
|
作者
He, Hongyang [1 ]
Chen, Junxiang [4 ,5 ]
Zhang, Dafeng [1 ,2 ,3 ]
Li, Fang [2 ,3 ]
Chen, Xin [1 ]
Chen, Yumei [1 ]
Bian, Linyan [1 ]
Wang, Qiufen [1 ]
Duan, Peigao [1 ]
Wen, Zhenhai [4 ,5 ]
Lv, Xiaojun [2 ,3 ]
机构
[1] Henan Polytech Univ, Coll Chem & Chem Engn, Dept Energy & Chem Engn, Jiaozuo 454003, Peoples R China
[2] Chinese Acad Sci, Key Lab Photochem Convers & Optoelect Mat, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, CAS HKU Joint Lab New Mat, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov Key Lab Nanomat, Fuzhou 350002, Fujian, Peoples R China
来源
ACS CATALYSIS | 2018年 / 8卷 / 07期
基金
北京市自然科学基金;
关键词
electronic metal-support interaction; oxygen evolution reaction; palladium; CO OXIDATION; THERMAL-DECOMPOSITION; CATALYTIC-ACTIVITY; OXIDE-FILMS; PD; STABILITY; REDUCTION; WATER; GOLD; NANOPARTICLES;
D O I
10.1021/acscatal.8b00460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work reports a general approach to improve the electrocatalytic property of noble metal through regulating its electron status by introducing the electronic metalsupport interaction (EMSI). As a case study, the catalytic activity of metallic Pd toward oxygen evolution reaction (OER) in alkaline solution has been significantly promoted by stabilizing Pd delta+ oxidic species at the interface of the Pd-metal oxide support with the help of EMSI effect, suggesting an intrinsic advantage of Pd delta+ in driving OER. We further demonstrate that the chemical state of Pd delta+ can be easily modulated in the range of 2+ to 3+ by changing the metal oxide support, interestingly, accompanied by a clear dependence of the OER activity on the oxidation state of Pd delta+. The high Pd3+ species-containing Fe2O3/Pd catalyst has fed an impressively enhanced OER property, showing an overpotential of 383 mV at 10 mA cm(2) compared to those of >600 mV on metallic Pd and 540 mV on Fe2O3/glassy carbon. The greatly enhanced OER performance is believed to primarily derive from the distinctive improvement in the adsorption of oxygenated intermediates (e.g., *OH and *OOH) on metal-oxide/Pd catalysts. Moreover, similar EMSI induced improvements in OER activity in alkaline solution are also achieved on both of the Fe2O3/Au and Fe2O3/Pt, which possess the oxidic species of Au3+, and Pt2+ and Pt4+, respectively.
引用
收藏
页码:6617 / 6626
页数:19
相关论文
共 50 条
  • [1] Ni-O4 as Active Sites for Efficient Oxygen Evolution Reaction with Electronic Metal-Support Interactions
    Zhou, Zhang-Hong
    Li, Wei-Hang
    Zhang, Zhen
    Huang, Qing-Song
    Zhao, Xiao-Chong
    Cao, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 47542 - 47548
  • [2] Dewetting of Pt Nanoparticles Boosts Electrocatalytic Hydrogen Evolution Due to Electronic Metal-Support Interaction
    Harsha, Shreyas
    Sharma, Rakesh K.
    Dierner, Martin
    Baeumer, Christoph
    Makhotkin, Igor
    Mul, Guido
    Ghigna, Paolo
    Spiecker, Erdmann
    Will, Johannes
    Altomare, Marco
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [3] Modulating Electronic Structure of Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution
    Xue, Ziqian
    Li, Yinle
    Zhang, Yawei
    Geng, Wei
    Jia, Baoming
    Tang, Jia
    Bao, Shixiong
    Wang, Hai-Ping
    Fan, Yanan
    Wei, Zhang-wen
    Zhang, Zishou
    Ke, Zhuofeng
    Li, Guangqin
    Su, Cheng-Yong
    ADVANCED ENERGY MATERIALS, 2018, 8 (29)
  • [4] Electronic Metal-Support Interaction Induces Hydrogen Spillover and Platinum Utilization in Hydrogen Evolution Reaction
    Feng, Yumei
    Xie, Yuhua
    Yu, Yingjie
    Chen, Yazhou
    Liu, Qingting
    Bao, Haifeng
    Luo, Fang
    Pan, Shuyuan
    Yang, Zehui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (01)
  • [5] Enrooted-Type Metal-Support Interaction Boosting Oxygen Evolution Reaction in Acidic Media
    Wang, Wenjuan
    Li, Cheng
    Zhou, Chuan
    Xiao, Xin
    Li, Fayan
    Huang, Ning-Yu
    Li, Lei
    Gu, Meng
    Xu, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (28)
  • [6] Enhancing the electronic metal-support interaction of CoRu alloy and pyridinic N for electrocatalytic pH-universal hydrogen evolution reaction
    Chen, Junsheng
    Huang, Jianfeng
    Zhao, Yong
    Cao, Liyun
    Kajiyoshi, Koji
    Liu, Yijun
    Li, Zhenjiang
    Feng, Yongqiang
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [7] Enhanced durability of Pd/CeO2-C via metal-support interaction for oxygen reduction reaction
    Mao, Xinbiao
    Ou, Mingyu
    Zhao, Wenjun
    Shi, Meiqin
    Zheng, Lingxia
    NANOTECHNOLOGY, 2024, 35 (47)
  • [8] Construction of a single-atom palladium catalyst by electronic metal-support interaction and interface confinement effect with remarkable performance in Suzuki coupling reaction
    Ji, Siqi
    Lu, Xiaowen
    Zhang, Mingyang
    Leng, Leipeng
    Liu, Hongxue
    Yin, Kuibo
    Xu, Chang
    He, Cheng
    Horton, J. Hugh
    Zhang, Jiangwei
    Li, Zhijun
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [9] Tuning on Highly Dispersed Iridium on Antimony-Doped Tin Oxide with Strong Metal-Support Interaction for Oxygen Evolution Reaction
    Khan, Inayat Ali
    Morgen, Per
    Sharma, Raghunandan
    Andersen, Shuang Ma
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (24): : 11977 - 11987
  • [10] Building strong metal-support interaction between TiN and RuO2 for efficient acidic oxygen evolution reaction
    Wang, Guina
    Wan, Weixuan
    Chen, Min
    Li, Jing
    Wu, Xiao
    Huang, Shuyi
    Li, Ke
    Tian, Xinlong
    Kang, Zhenye
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 71 : 804 - 810