Probing Thermal Flux in Twinned Ge Nanowires through Raman Spectroscopy

被引:22
|
作者
Majumdar, Dipanwita [1 ]
Biswas, Subhajit [2 ,3 ,4 ]
Ghoshal, Tandra
Holmes, Justin D. [2 ,3 ,4 ,5 ]
Singha, Achintya [1 ]
机构
[1] Bose Inst, Dept Phys, 93-1 Acharya Prafulla Chandra Rd, Kolkata 700009, India
[2] Natl Univ Ireland Univ Coll Cork, Dept Chem, Mat Chem & Anal Grp, Cork, Ireland
[3] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[4] Natl Univ Ireland Univ Coll Cork, Mat Res Grp, Dept Chem, Cork, Ireland
[5] Univ Dublin Trinity Coll, AMBER CRANN, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
germanium nanowire; polytype phase; Raman spectroscopy; laser-induced heating; thermal properties; TEMPERATURE-DEPENDENCE; SILICON; CONDUCTIVITY; SCATTERING; PERFORMANCE; TRANSPORT; STRAIN; SI; HETEROSTRUCTURES; GROWTH;
D O I
10.1021/acsami.5b07025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a noninvasive optical technique based on micro-Raman spectroscopy to study the temperature-dependent phonon behavior of normal (nondefective) and twinned germanium nanowires (Ge-NWs). We studied thermophysical properties of Ge-NWs from Raman spectra, measured by varying excitation laser power at ambient condition. We derived the laser-induced temperature rise during Raman measurements by analyzing the Raman peak position for both the NWs, and for a comparative study we performed the same for bulk Ge. The frequency of the Ge-Ge phonon mode softens for all the samples with the increase in temperature, and the first-order temperature coefficient (chi(T)) for defected NWs is found to be higher than normal NWS and bulk We demonstrated that apart from the size, the lamellar twinning and polytype phase drastically affect the heat transport properties of NWs.
引用
收藏
页码:24679 / 24685
页数:7
相关论文
共 50 条
  • [11] Strain distribution and Raman spectroscopy in individual Ge/CdSe biaxial nanowires
    Wang, Dong
    Wang, Chunrui
    Xu, Jing
    Wu, Binhe
    Ouyang, Lizhi
    Parthasarathy, Ranganathan
    Chen, Xiaoshuang
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (02)
  • [12] Interfacial intermixing of Ge/Si core-shell nanowires by thermal annealing
    Zhang, Xiaolong
    Jevasuwan, Wipakorn
    Fukata, Naoki
    NANOSCALE, 2020, 12 (14) : 7572 - 7576
  • [13] Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity
    Hu, Ming
    Poulikakos, Dimos
    NANO LETTERS, 2012, 12 (11) : 5487 - 5494
  • [14] Raman concentrators in Ge nanowires with dielectric coatings
    Hyun, Jerome K.
    Kim, In Soo
    Connell, Justin G.
    Lauhon, Lincoln J.
    OPTICS EXPRESS, 2012, 20 (05): : 5127 - 5132
  • [15] Thermal conductivity of mesoporous films measured by Raman spectroscopy
    Stoib, B.
    Filser, S.
    Petermann, N.
    Wiggers, H.
    Stutzmann, M.
    Brandt, M. S.
    APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [16] Spatially resolved determination of thermal conductivity by Raman spectroscopy
    Stoib, B.
    Filser, S.
    Stoetzel, J.
    Greppmair, A.
    Petermann, N.
    Wiggers, H.
    Schierning, G.
    Stutzmann, M.
    Brandt, M. S.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (12)
  • [17] Dual-Wavelength Laser Flash Raman Spectroscopy Method for In-Situ Measurements of the Thermal Diffusivity: Principle and Experimental Verification
    Fan Aoran
    Hu Yudong
    Ma Weigang
    Wang Haidong
    Zhang Xing
    JOURNAL OF THERMAL SCIENCE, 2019, 28 (02) : 159 - 168
  • [18] Manipulating thermal conductivity of silicon nanowires through surrounded fins and Ge dopant
    Liang, Qi
    He, Ya-Ling
    Hung, Tzu-Chen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [19] Quantitative Heat Dissipation Characteristics in Current-Carrying GaN Nanowires Probed by Combining Scanning Thermal Microscopy and Spatially Resolved Raman Spectroscopy
    Soudi, Afsoon
    Dawson, Robert D.
    Gu, Yi
    ACS NANO, 2011, 5 (01) : 255 - 262
  • [20] Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires
    Martin, Pierre N.
    Aksamija, Zlatan
    Pop, Eric
    Ravaioli, Umberto
    NANO LETTERS, 2010, 10 (04) : 1120 - 1124