Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells

被引:49
|
作者
Carvalho, Marta S. [1 ,2 ]
Silva, Joao C. [1 ,2 ]
Cabral, Joaquim M. S. [2 ,3 ]
da Silva, Claudia L. [2 ,3 ]
Vashishth, Deepak [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
[2] Univ Lisbon, Inst Super Tecn, IBB, Dept Bioengn, Lisbon, Portugal
[3] Univ Lisbon, Discoveries Ctr Regenerat & Precis Med, Inst Super Tecn, Lisbon Campus, Lisbon, Portugal
关键词
angiogenesis; cell-derived extracellular matrix; human umbilical vein endothelial cells; mesenchymal stem; stromal cells; osteogenesis; STEM-CELLS; IN-VITRO; ENDOTHELIAL-CELLS; GENE-EXPRESSION; PROLIFERATION; COCULTURE; OSTEOBLASTS; VITRONECTIN; EXPANSION;
D O I
10.1002/term.2907
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
引用
收藏
页码:1544 / 1558
页数:15
相关论文
共 50 条
  • [31] Shear stress induces osteogenic differentiation of human mesenchymal stem cells
    Yourek, Gregory
    McCormick, Susan M.
    Mao, Jeremy J.
    Reilly, Gwendolen C.
    REGENERATIVE MEDICINE, 2010, 5 (05) : 713 - 724
  • [32] Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Siying Zhong
    Xufeng He
    Yuexia Li
    Xiangxin Lou
    Tissue Engineering and Regenerative Medicine, 2019, 16 : 141 - 150
  • [33] Osteogenic Differentiation of Human Turbinate Mesenchymal Stromal Cells
    Hwang, Se Hwan
    Kim, Su Young
    Park, Sun Hwa
    Choi, Mi Young
    Back, Sang A.
    Kim, Yu Im
    Sun, Dong Il
    Kim, Sung Won
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 8 (06) : 544 - 553
  • [34] Human Term Placenta-Derived Mesenchymal Stromal Cells Are Less Prone to Osteogenic Differentiation Than Bone Marrow-Derived Mesenchymal Stromal Cells
    Pilz, Gregor A.
    Ulrich, Christine
    Ruh, Manuel
    Abele, Harald
    Schaefer, Richard
    Kluba, Torsten
    Buehring, Hans-Joerg
    Rolauffs, Bernd
    Aicher, Wilhelm K.
    STEM CELLS AND DEVELOPMENT, 2011, 20 (04) : 635 - 646
  • [35] Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy
    Murali, Vishnu Priya
    Holmes, Christina A.
    BONE REPORTS, 2021, 14
  • [36] Sulfated hyaluronan/collagen I matrices enhance the osteogenic differentiation of human mesenchymal stromal cells in vitro even in the absence of dexamethasone
    Hempel, U.
    Moeller, S.
    Noack, C.
    Hintze, V.
    Scharnweber, D.
    Schnabelrauch, M.
    Dieter, P.
    ACTA BIOMATERIALIA, 2012, 8 (11) : 4064 - 4072
  • [37] Functional proteins of mesenchymal stem cell-derived extracellular vesicles
    Qiu, Guanguan
    Zheng, Guoping
    Ge, Menghua
    Wang, Jiangmei
    Huang, Ruoqiong
    Shu, Qiang
    Xu, Jianguo
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [38] Artificial extracellular matrices of collagen and sulphated hyaluronan enhance the differentiation of human mesenchymal stem cells in the presence of dexamethasone
    Hintze, V.
    Miron, A.
    Moeller, S.
    Schnabelrauch, M.
    Heinemann, S.
    Worch, H.
    Scharnweber, D.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 (04) : 314 - 324
  • [39] Spheroid size influences cellular senescence and angiogenic potential of mesenchymal stromal cell-derived soluble factors and extracellular vesicles
    Rovere, Matteo
    Reverberi, Daniele
    Arnaldi, Pietro
    Palama, Maria Elisabetta Federica
    Gentili, Chiara
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [40] Transferable cell-secreted extracellular matrices enhance osteogenic differentiation
    Decaris, Martin L.
    Mojadedi, Azad
    Bhat, Archana
    Leach, J. Kent
    ACTA BIOMATERIALIA, 2012, 8 (02) : 744 - 752