AN ENERGY-STABLE AND CONVERGENT FINITE-DIFFERENCE SCHEME FOR THE PHASE FIELD CRYSTAL EQUATION

被引:420
作者
Wise, S. M. [1 ]
Wang, C. [2 ]
Lowengrub, J. S. [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
phase field crystal; finite-difference methods; stability; nonlinear partial differential equations; CAHN-HILLIARD EQUATION; GROWTH; MODEL;
D O I
10.1137/080738143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an unconditionally energy stable finite-difference scheme for the phase field crystal equation. The method is based on a convex splitting of a discrete energy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step size. We present local-in-time error estimates that ensure the convergence of the scheme. While this paper is primarily concerned with the phase field crystal equation, most of the theoretical results hold for the related Swift Hohenberg equation as well.
引用
收藏
页码:2269 / 2288
页数:20
相关论文
共 20 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   Nucleation and growth by a phase field crystal (PFC) model [J].
Backofen, R. ;
Raetz, A. ;
Voigt, A. .
PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) :813-820
[3]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]   An efficient algorithm for solving the phase field crystal model [J].
Cheng, Mowei ;
Warren, James A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) :6241-6248
[6]  
Dacorogna B., 2015, INTRO CALCULUS VARIA
[7]   Modeling elasticity in crystal growth [J].
Elder, KR ;
Katakowski, M ;
Haataja, M ;
Grant, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :2457011-2457014
[8]   Unconditionally gradient stable time marching the Cahn-Hilliard equation [J].
Eyre, DJ .
COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 :39-46
[9]  
Furihata D, 2001, NUMER MATH, V87, P675, DOI 10.1007/s002110000212
[10]  
HU Z, STABLE EFFICIE UNPUB