Deployment of a Smart and Predictive Maintenance System in an Industrial Case Study

被引:0
作者
Alves, Filipe [1 ]
Badikyan, Hasmik [1 ]
Moreira, Antonio H. J. [2 ]
Azevedo, Joao [3 ]
Moreira, Pedro Miguel [3 ]
Romero, Luis [3 ]
Leitao, Paulo [1 ]
机构
[1] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[2] 2Ai Polytech Inst Cavado & Ave, Campus IPCA, P-4750810 Barcelos, Portugal
[3] Inst Politecn Viana do Castelo, ARC4DigiT Appl Res Ctr Digital Transformat, Av Atlantico, P-4900348 Viana Do Castelo, Portugal
来源
2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE) | 2020年
关键词
Industrial maintenance; Predictive maintenance; Intelligent Decision Support; Augmented reality; BIG DATA; INTELLIGENT;
D O I
10.1109/isie45063.2020.9152441
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Industrial manufacturing environments are often characterized as being stochastic, dynamic and chaotic, being crucial the implementation of proper maintenance strategies to ensure the production efficiency, since the machines' breakdown leads to a degradation of the system performance, causing the loss of productivity and business opportunities. In this context, the use of emergent ICT technologies, such as Internet of Things (IoT), machine learning and augmented reality, allows to develop smart and predictive maintenance systems, contributing for the reduction of unplanned machines' downtime by predicting possible failures and recovering faster when they occur. This paper describes the deployment of a smart and predictive maintenance system in an industrial case study, that considers IoT and machine learning technologies to support the online and real-time data collection and analysis for the earlier detection of machine failures, allowing the visualization, monitoring and schedule of maintenance interventions to mitigate the occurrence of such failures. The deployed system also integrates machine learning and augmented reality technologies to support the technicians during the execution of maintenance interventions.
引用
收藏
页码:493 / 498
页数:6
相关论文
共 50 条
[31]   Predictive Maintenance System using motor current signal analysis for Industrial Robot [J].
Bonci, Andrea ;
Longhi, Sauro ;
Nabissi, Giacomo ;
Verdini, Federica .
2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, :1453-1456
[32]   A Hybrid Machine Learning Approach for Predictive Maintenance in Smart Factories of the Future [J].
Cho, Sangje ;
May, Gokan ;
Tourkogiorgis, Ioannis ;
Perez, Roberto ;
Lazaro, Oscar ;
de la Maza, Borja ;
Kiritsis, Dimitris .
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING FOR INDUSTRY 4.0, APMS 2018, 2018, 536 :311-317
[33]   The Impact of Predictive Maintenance on the Performance of Industrial Enterprises [J].
Mohamed Er-Ratby ;
Abdessamad Kobi ;
Youssef Sadraoui ;
Moulay Saddik Kadiri .
SN Computer Science, 6 (1)
[34]   TIP4.0: Industrial Internet of Things Platform for Predictive Maintenance [J].
Resende, Carlos ;
Folgado, Duarte ;
Oliveira, Joao ;
Franco, Bernardo ;
Moreira, Waldir ;
Oliveira-Jr, Antonio ;
Cavaleiro, Armando ;
Carvalho, Ricardo .
SENSORS, 2021, 21 (14)
[35]   End-to-End Industrial IoT Platform for Actionable Predictive Maintenance [J].
Christou, Ioannis T. ;
Kefalakis, Nikos ;
Zalonis, Andreas ;
Soldatos, John ;
Broechler, Raimund .
IFAC PAPERSONLINE, 2020, 53 (03) :173-178
[36]   Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry [J].
Fernandes, Marta ;
Canito, Alda ;
Bolon-Canedo, Veronica ;
Conceicao, Luis ;
Praca, Isabel ;
Marreiros, Goreti .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 46 :252-262
[37]   Exploring the potentials of online machine learning for predictive maintenance: a case study in the railway industry [J].
Le-Nguyen, Minh-Huong ;
Turgis, Fabien ;
Fayemi, Pierre-Emmanuel ;
Bifet, Albert .
APPLIED INTELLIGENCE, 2023, 53 (24) :29758-29780
[38]   Improved Fault Classification for Predictive Maintenance in Industrial IoT Based on AutoML: A Case Study of Ball-Bearing Faults [J].
Hadi, Russul H. ;
Hady, Haider N. ;
Hasan, Ahmed M. ;
Al-Jodah, Ammar ;
Humaidi, Amjad J. .
PROCESSES, 2023, 11 (05)
[39]   Data Analytics Towards Predictive Maintenance for Industrial Ovens A Case Study Based on Data Analysis of Various Sensors Data [J].
Rousopoulou, Vaia ;
Nizamis, Alexandros ;
Giugliano, Luigi ;
Haigh, Peter ;
Martins, Luis ;
Ioannidis, Dimosthenis ;
Tzovaras, Dimitrios .
ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS (CAISE 2019), 2019, 349 :83-94
[40]   Building a Digital Twin Powered Intelligent Predictive Maintenance System for Industrial AC Machines [J].
Singh, R. Raja ;
Bhatti, Ghanishtha ;
Kalel, Dattatraya ;
Vairavasundaram, Indragandhi ;
Alsaif, Faisal .
MACHINES, 2023, 11 (08)