A Human Bone Marrow 3D Model to Investigate the Dynamics and Interactions Between Resident Cells in Physiological or Tumoral Contexts

被引:0
作者
Arizkane, Kawtar [1 ,2 ]
Geistlich, Kevin [1 ,2 ,3 ]
Moindrot, Laurine [1 ,2 ]
Risson, Emma [1 ,2 ]
Jeanpierre, Sandrine [1 ,2 ,3 ]
Barral, Lea [1 ,2 ]
Bobard, Anaelle [1 ,2 ]
Menegazzi, Giulio [4 ]
Voeltzel, Thibault [1 ,2 ]
Maguer-Satta, Veronique [1 ,2 ]
Lefort, Sylvain [1 ,2 ]
机构
[1] Ctr Rech Cancerol Lyon, Lyon, France
[2] Univ Lyon, Lyon, France
[3] Ctr Leon Berard, Lyon, France
[4] Univ Firenze, Dept Expt & Clin Biomed Sci Mario Serio, Florence, Italy
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2022年 / 190期
关键词
MESENCHYMAL STEM-CELLS; HEMATOPOIETIC STEM; NICHE; DIFFERENTIATION; TISSUE; COCULTURE; SCAFFOLDS;
D O I
10.3791/64736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The medullary niche is a complex ecosystem that is essential to maintain homeostasis for resident cells. Indeed, the bone marrow, which includes a complex extracellular matrix and various cell types, such as mesenchymal stem cells, osteoblasts, and endothelial cells, is deeply involved in hematopoietic stem cell regulation through direct cell-cell interactions, as well as cytokine production. To closely mimic this in vivo structure and conduct experiments reflecting the responses of the human bone marrow, several 3D models have been created based on biomaterials, relying primarily on primary stromal cells. Here, a protocol is described to obtain a minimal and standardized system that is easy to set up and provides features of bone marrow -like structure, which combines different cell populations including endothelial cells, and reflects the heterogeneity of in vivo bone marrow tissue. This 3D bone marrow -like structure-assembled using calcium phosphate-based particles and human cell lines, representative of the bone marrow microenvironment-allows the monitoring of a wide variety of biological processes by combining or replacing different primary cell populations within the system. The final 3D structures can then either be harvested for image analysis after fixation, paraffin-embedding, and histological/ immunohistochemical staining for cell localization within the system, or dissociated to collect each cellular component for molecular or functional characterization.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Dynamic responses of the haematopoietic stem cell niche to diverse stresses [J].
Batsivari, Antoniana ;
Haltalli, Myriam Ludymila Rachelle ;
Passaro, Diana ;
Pospori, Constandina ;
Lo Celso, Cristina ;
Bonnet, Dominique .
NATURE CELL BIOLOGY, 2020, 22 (01) :7-17
[2]   Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look [J].
Behrmann, Lena ;
Wellbrock, Jasmin ;
Fiedler, Walter .
FRONTIERS IN ONCOLOGY, 2018, 8
[3]   A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone [J].
Bersini, Simone ;
Jeon, Jessie S. ;
Dubini, Gabriele ;
Arrigoni, Chiara ;
Chung, Seok ;
Charest, Joseph L. ;
Moretti, Matteo ;
Kamm, Roger D. .
BIOMATERIALS, 2014, 35 (08) :2454-2461
[4]  
BLAZSEK I, 1995, EXP HEMATOL, V23, P309
[5]   In vitro biomimetic engineering of a human hematopoietic niche with functional properties [J].
Bourgine, Paul E. ;
Klein, Thibaut ;
Paczulla, Anna M. ;
Shimizu, Takafumi ;
Kunz, Leo ;
Kokkaliaris, Konstantinos D. ;
Coutu, Daniel L. ;
Lengerke, Claudia ;
Skoda, Radek ;
Schroeder, Timm ;
Martin, Ivan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) :E5688-E5695
[6]   Mimicking the 3D biology of osteochondral tissue with microfluidic-based solutions: breakthroughs towards boosting drug testing and discovery [J].
Carvalho, Mariana R. ;
Reis, Rui Luis ;
Oliveira, Joaquim Miguel .
DRUG DISCOVERY TODAY, 2018, 23 (03) :711-718
[7]   The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening [J].
Chatterjee, Kaushik ;
Lin-Gibson, Sheng ;
Wallace, William E. ;
Parekh, Sapun H. ;
Lee, Young Jong ;
Cicerone, Marcus T. ;
Young, Marian F. ;
Simon, Carl G., Jr. .
BIOMATERIALS, 2010, 31 (19) :5051-5062
[8]   On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology [J].
Chou, David B. ;
Frismantas, Viktoras ;
Milton, Yuka ;
David, Rhiannon ;
Pop-Damkov, Petar ;
Ferguson, Douglas ;
MacDonald, Alexander ;
Bolukbasi, Ozge Vargel ;
Joyce, Cailin E. ;
Teixeira, Liliana S. Moreira ;
Rech, Arianna ;
Jiang, Amanda ;
Calamari, Elizabeth ;
Jalili-Firoozinezhad, Sasan ;
Furlong, Brooke A. ;
O'Sullivan, Lucy R. ;
Ng, Carlos F. ;
Choe, Youngjae ;
Marquez, Susan ;
Myers, Kasiani C. ;
Weinberg, Olga K. ;
Hasserjian, Robert P. ;
Novak, Richard ;
Levy, Oren ;
Prantil-Baun, Rachelle ;
Novina, Carl D. ;
Shimamura, Akiko ;
Ewart, Lorna ;
Ingber, Donald E. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (4) :394-406
[9]   3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation [J].
Costantini, Marco ;
Idaszek, Joanna ;
Szoke, Krisztina ;
Jaroszewicz, Jakub ;
Dentini, Mariella ;
Barbetta, Andrea ;
Brinchmann, Jan E. ;
Swieszkowski, Wojciech .
BIOFABRICATION, 2016, 8 (03)
[10]   3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma [J].
de la Puente, Filar ;
Muz, Barbara ;
Gilson, Rebecca C. ;
Azab, Feda ;
Luderer, Micah ;
King, Justin ;
Achilefu, Samuel ;
Vij, Ravi ;
Azab, Abdel Kareem .
BIOMATERIALS, 2015, 73 :70-84