The Exact Solutions for Fractional-Stochastic Drinfel'd-Sokolov-Wilson Equations Using a Conformable Operator

被引:6
作者
Al-Askar, Farah M. [1 ]
Mohammed, Wael W. [2 ,3 ]
Samura, Sallieu K. [4 ]
El-Morshedy, M. [5 ,6 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Hail, Dept Math, Fac Sci, Hail 2440, Saudi Arabia
[3] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
[4] Univ Sierra Leone, Dept Math & Stat, Fourah Bay Coll, Freetown, Sierra Leone
[5] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[6] Mansoura Univ, Dept Stat & Comp Sci, Fac Sci, Mansoura 35516, Egypt
关键词
TRAVELING-WAVE SOLUTIONS; NONLINEAR EVOLUTION; TRANSFORMATION;
D O I
10.1155/2022/7133824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional-stochastic Drinfel'd-Sokolov-Wilson equations (FSDSWEs) perturbed by the multiplicative Wiener process are studied. The mapping method is used to obtain rational, hyperbolic, and elliptic stochastic solutions for FSDSWEs. Due to the importance of FSDSWEs in describing the propagation of shallow water waves, the derived solutions are significantly more useful and effective in understanding various important challenging physical phenomena. In addition, we use the MATLAB Package to generate 3D graphs for specific FSDSWE solutions in order to discuss the impact of fractional order and the Wiener process on the solutions of FSDSWEs.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation
    Al-Askar, Farah M.
    Mohammed, Wael W.
    Albalahi, Abeer M.
    El-Morshedy, Mahmoud
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [2] The Impact of the Wiener Process on the Analytical Solutions of the Stochastic (2+1)-Dimensional Breaking Soliton Equation by Using Tanh-Coth Method
    Al-Askar, Farah M.
    Mohammed, Wael W.
    Albalahi, Abeer M.
    El-Morshedy, Mahmoud
    [J]. MATHEMATICS, 2022, 10 (05)
  • [3] [Anonymous], 2009, COMMUN NONLINEAR SCI, V14, P3220
  • [4] Exact solutions of the Drinfel'd-Sokolov-Wilson equation using Backlund transformation of Riccati equation and trial function approach
    Arnous, A. H.
    Mirzazadeh, M.
    Eslami, M.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (06): : 1153 - 1160
  • [5] Arora R., 2013, ADV SCI ENG MED, V5, P1105
  • [6] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769
  • [7] Backward bifurcation and oscillations in a nested immuno-eco-epidemiological model
    Barfield, Michael
    Martcheva, Maia
    Tuncer, Necibe
    Holt, Robert D.
    [J]. JOURNAL OF BIOLOGICAL DYNAMICS, 2017, 12 (01) : 51 - 88
  • [8] From continuous time random walks to the fractional Fokker-Planck equation
    Barkai, E
    Metzler, R
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (01) : 132 - 138
  • [9] Robust Control of a Cable From a Hyperbolic Partial Differential Equation Model
    Baudouin, Lucie
    Rondepierre, Aude
    Neild, Simon
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (03) : 1343 - 1351
  • [10] Bibi S., 2014, J EGYPTIAN MATH SOC, V22, P517