Artificial intelligence for prediction of response to cancer immunotherapy

被引:30
作者
Yang, Yuhan [1 ,3 ]
Zhao, Yunuo [2 ]
Liu, Xici [3 ]
Huang, Juan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sichuan Acad Med Sci, Dept Hematol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Collaborat Innovat Ctr Biotherapy, State Key Lab Biotherapy & Canc Ctr, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
Artificial intelligence; Cancer immunotherapy; Treatment response; Machine learning; Deep learning; CLINICAL BENEFIT; NSCLC-PATIENTS; IMMUNE; RADIOMICS; IDENTIFICATION; SIGNATURE; PATHOLOGY; BIOMARKER; SURVIVAL; WHOLE;
D O I
10.1016/j.semcancer.2022.11.008
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) indicates the application of machines to imitate intelligent behaviors for solving complex tasks with minimal human intervention, including machine learning and deep learning. The use of AI in medicine improves health-care systems in multiple areas such as diagnostic confirmation, risk stratification, analysis, prognosis prediction, treatment surveillance, and virtual health support, which has considerable potential to revolutionize and reshape medicine. In terms of immunotherapy, AI has been applied to unlock underlying immune signatures to associate with responses to immunotherapy indirectly as well as predict responses to immunotherapy responses directly. The AI-based analysis of high-throughput sequences and medical images can provide useful information for management of cancer immunotherapy considering the excellent abilities in selecting appropriate subjects, improving therapeutic regimens, and predicting individualized prognosis. In present review, we aim to evaluate a broad framework about AI-based computational approaches for prediction of response to cancer immunotherapy on both indirect and direct manners. Furthermore, we summarize our perspectives about challenges and opportunities of further AI applications on cancer immunotherapy relating to clinical practicability.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 133 条
[11]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[12]   Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients [J].
Chen, Dongjie ;
Liu, Jixing ;
Zang, Longjun ;
Xiao, Tijun ;
Zhang, Xianlin ;
Li, Zheng ;
Zhu, Hongwei ;
Gao, Wenzhe ;
Yu, Xiao .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2022, 18 (01) :360-373
[13]   Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors [J].
Chen, Fangjun ;
Zou, Zhengyun ;
Du, Juan ;
Su, Shu ;
Shao, Jie ;
Meng, Fanyan ;
Yang, Ju ;
Xu, Qiuping ;
Ding, Naiqing ;
Yang, Yang ;
Liu, Qin ;
Wang, Qin ;
Sun, Zhichen ;
Zhou, Shujuan ;
Du, Shiyao ;
Wei, Jia ;
Liu, Baorui .
JOURNAL OF CLINICAL INVESTIGATION, 2019, 129 (05) :2056-2070
[14]   Robust Prediction of Prognosis and Immunotherapeutic Response for Clear Cell Renal Cell Carcinoma Through Deep Learning Algorithm [J].
Chen, Siteng ;
Zhang, Encheng ;
Jiang, Liren ;
Wang, Tao ;
Guo, Tuanjie ;
Gao, Feng ;
Zhang, Ning ;
Wang, Xiang ;
Zheng, Junhua .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[15]   A whole-slide image (WSI)-based immunohistochemical feature prediction system improves the subtyping of lung cancer [J].
Chen, Yanyang ;
Yang, Huan ;
Cheng, Zhiqiang ;
Chen, Lili ;
Peng, Sui ;
Wang, Jianbo ;
Yang, Minglei ;
Lin, Chenghao ;
Chen, Yu ;
Wang, Yuefeng ;
Huang, Leilei ;
Chen, Yangshan ;
Li, Weizhong ;
Ke, Zunfu .
LUNG CANCER, 2022, 165 :18-27
[16]  
Chen Y, 2021, AM J TRANSL RES, V13, P1051
[17]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[18]   Early Readout on Overall Survival of Patients With Melanoma Treated With Immunotherapy Using a Novel Imaging Analysis [J].
Dercle, Laurent ;
Zhao, Binsheng ;
Gonen, Mithat ;
Moskowitz, Chaya S. ;
Firas, Ahmed ;
Beylergil, Volkan ;
Connors, Dana E. ;
Yang, Hao ;
Lu, Lin ;
Fojo, Tito ;
Carvajal, Richard ;
Karovic, Sanja ;
Maitland, Michael L. ;
Goldmacher, Gregory, V ;
Oxnard, Geoffrey R. ;
Postow, Michael A. ;
Schwartz, Lawrence H. .
JAMA ONCOLOGY, 2022, 8 (03) :385-392
[19]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335
[20]   Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data [J].
Effland, Alexander ;
Kobler, Erich ;
Brandenburg, Anne ;
Klatzer, Teresa ;
Neuhaeuser, Leonie ;
Hoelzel, Michael ;
Landsberg, Jennifer ;
Pock, Thomas ;
Rumpf, Martin .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (04) :587-599