Mutations in the FAD binding domain cause stress-induced misoxidation of the endoplasmic reticulum oxidoreductase Ero1β

被引:10
作者
Dias-Gunasekara, Sanjika
van Lith, Marcel
Williams, J. A. Gareth
Kataky, Ritu
Benham, Adam M.
机构
[1] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England
[2] Univ Durham, Dept Chem, Durham DH1 3LE, England
基金
英国惠康基金;
关键词
D O I
10.1074/jbc.M602354200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Disulfide bond catalysis is an essential component of protein biogenesis in the secretory pathway, from yeast through to man. In the endoplasmic reticulum (ER), protein-disulfide isomerase (PDI) catalyzes the oxidation and isomerization of disulfide bonds and is re-oxidized by an endoplasmic reticulum oxidoreductase (ERO). The elucidation of ERO function was greatly aided by the genetic analysis of two ero mutants, whose impairment results from point mutations in the FAD binding domain of the Ero protein. The ero1-1 and ero1-2 yeast strains have conditional and dithiothreitol-sensitive phenotypes, but the effects of the mutations on the behavior of Ero proteins has not been reported. Here, we show that these Gly to Ser and His to Tyr mutations do not prevent the dimerization of Ero1 beta or the non-covalent interaction of Ero1 beta with PDI. However, the Gly to Ser mutation abolishes disulfide-dependent PDI-Ero1 beta heterodimers. Both the Gly to Ser and His to Tyr mutations make Ero1 beta susceptible to misoxidation and aggregation, particularly during a temperature or redox stress. We conclude that the Ero FAD binding domain is critical for conformational stability, allowing Ero proteins to withstand stress conditions that cause client proteins to misfold.
引用
收藏
页码:25018 / 25025
页数:8
相关论文
共 36 条
  • [1] The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lα
    Benham, AM
    Cabibbo, A
    Fassio, A
    Bulleid, N
    Sitia, R
    Braakman, I
    [J]. EMBO JOURNAL, 2000, 19 (17) : 4493 - 4502
  • [2] Two conserved cysteine triads in human Ero1α cooperate for efficient disulfide bond formation in the endoplasmic reticulum
    Bertoli, G
    Simmen, T
    Anelli, T
    Molteni, SN
    Fesce, R
    Sitia, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (29) : 30047 - 30052
  • [3] ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum
    Cabibbo, A
    Pagani, M
    Fabbri, M
    Rocchi, M
    Farmery, MR
    Bulleid, NJ
    Sitia, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) : 4827 - 4833
  • [4] Glutathione is required to regulate the formation of native disulfide bonds within proteins entering the secretory pathway
    Chakravarthi, S
    Bulleid, NJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (38) : 39872 - 39879
  • [5] Competition between glutathione and protein thiols for disulphide-bond formation
    Cuozzo, JW
    Kaiser, CA
    [J]. NATURE CELL BIOLOGY, 1999, 1 (03) : 130 - 135
  • [6] Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1β
    Dias-Gunasekara, S
    Gubbens, J
    van Lith, M
    Dunne, C
    Williams, JAG
    Kataky, R
    Scoones, D
    Lapthorn, A
    Bulleid, NJ
    Benham, AM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (38) : 33066 - 33075
  • [7] Setting the standards: Quality control in the secretory pathway
    Ellgaard, L
    Molinari, M
    Helenius, A
    [J]. SCIENCE, 1999, 286 (5446) : 1882 - 1888
  • [8] Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum
    Frand, AR
    Kaiser, CA
    [J]. MOLECULAR CELL, 1999, 4 (04) : 469 - 477
  • [9] Pathways for protein disulphide bond formation
    Frand, AR
    Cuozzo, JW
    Kaiser, CA
    [J]. TRENDS IN CELL BIOLOGY, 2000, 10 (05) : 203 - 210
  • [10] The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum
    Frand, AR
    Kaiser, CA
    [J]. MOLECULAR CELL, 1998, 1 (02) : 161 - 170